
AD-RI94 224 ON BROADBAND MATCHING OF NULTIPORT ELECTRICAL NETORKS i/
WITH APPLICATIONS (U) ILLINOIS UNIV AT CHICAGO CIRCLE
DEPT OF ELECTRICAL ENGINEERIN W CHEN JAN 88

UNCLASSIFIED UIC-EECS-87-3 AFWAL-TR-87-ii3i F/G 9/1Ehhhhhhhhhhil
EhhhhhhhhhhhhE
EhhhhhhhhhhhhE
EIIIIIIIIIIIIE
IIIIIhhhhhhlhl

I .flfl llfflfflffl
l/i/I/mill/l//.



11111111M
L_6

11111 I.C 'I



AD-A 194 224
\1 AA\I.- iR-S-1- I t31 {

ON IWAI AN MA[ l TCING 01: MUIVI PORT ELECTRICAL NETWORKS
I I'll \P11 I CAYIONS

-Kit Chen
Uni~rsit ,' of Illinois at Chicago
[DcYirtment of Electrical Engineering and Computer Science
1).0 . Box 4348
Chicago, 1!. 60680 DTIC

ELE%..-
J~n~l\ lssAPR 2 7

D

1iii;tl Report for Period: August 1984-September 1987

\Ayrw,( d for public relcase; distribution unlimited.

fV I I NJ f X \ ()NUlY
I1t )  P l i K I[I\ CII I \I:R()NAtII II(AI, ,,A \BOtRAT II I S

i )i I. S fS'I IMS COMM1ANI
;11! -PAI'\ I IFRS(JN \ R F(IR( BASI:, 01110 45433-6543

88 4 26 081
" .: " . . . . . .' . - - , . - . - - . - - .-



NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated or in
any way supplied the said drawings, specifications, or other data, is not to
be regarded by implication, or otherwise in any manner construed, as licensing
the holder, or any other person or corporation; or as conveying any rights or
permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS, it will be available to the general public, including foreign nations.

Thn techricai report has been reviewed and is approved for publication.

J.AMiES B.Y.1 UI, Proj Engr PAUL S. HADORN, PhD, Chief
ESM Technology Gp, EW Division Passive ECM Br, EW Division
Avionics Laboratory Avionics Laboratory

FOR THE COMMANDER

.5

10J I,, ,. IHAN, Acitg Chief

Electronic Warfarte Division
Avionics Laboratorv

.5"

If your address has changed, if you wish to be removed from our mailing
* list, or if the addressee is no longer employed by your organization please

notify AFWAL/AAWP, Wright-Patterson AFB, OH 45433-6543 to help us maintain
a current ailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

%d

%V%



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAG

REPORT DOCUMENTATION PAGE
iREPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKING

K ~~~Unclai gie~d_______________________
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILA*iUTY OF REPORT

2b DCLASIFCATON OOWNRADNG CHEULEApproved for public release;
2b DCLASIFCATON DOWNRADNG CHEULCdistribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S, MONITORING ORGANIZATION REPORT NUMBER(S)

uIC-FECS-S7-3 A F W AL -iR -8 7-I1 1l

6a- NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7s, NAME OF MONITORING ORGANIZATION
Utniv. of Illinois at Chicago (fapplicable) Avionics Laboratory (AFWAL/AAWP)
Dept. of Elect Eng. & COMP. Sc . E688 AV wright Aeronautical Labs

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

P.u. Box 4348 WPAFB, 011 454373-6543
-~ Chicago, IL 60680

ea. NAME OF FUNDING/ISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Oif applicable) F33615-84K-1556
[cr4t. of the Air F'orce FQ8419

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Ai orc:e S\ystems Command PROGRAM IPROJECT TASK ~ OKUI
Aernaticl ystmsDivPMECELEMENT NO. NO. No. IACCESSION NO.

brigt-PttesonAFB, Oil 45433-6543 204 35 41

* 11. TITLE (Inc/Lode Security Classification)

Cnhroadbaid datc:hing of NJjjltiport ElcrclNetworks with Applications

-: 12 PERSONAL AUTHOR(S)
ita - Kal Chen11bTMCVRDDREOT(erMotay

13a. TYPE OF REPORT 13 IFCOEE 14. CATE OFRPR1Ya oafDy 5. PAGE COUNT

in.FROM 08/84 To 09/8 1999/01/IS 244

16. SUPPLEMENTARY NOTATION The computer software contained herei n are theoretical and/or

references that in nIo way reflect A ir Force-owned or -developed
17 CSATI computer software.
FIELD GOUP CODES j18. SUBJECT TERMS (Continue on reverse if necessary and iidentify by block number)

'9. ABSTRACT (Cotinue on reverse if necessary and identify by block number)

h ,,:tille of the re-scarch is to sole c secer:il pro!hlems of- fundamental importance in

the u,,- ig.i f broadband matching networks and !!ul ti plexers. M1ore specifically., We

i a e 1U f,_l lowin~g.

aj iet of coefficient const raints that nc !ecessaly and sufficient for a

-I: I it ional mat rix\ to be the Sca tterinj, matrix of a passiv n-port network
luig to the n prescibe non-Foster poiiera meaces.

'i -,ct I, cocfticient const rai nts that are, necessary and sufficient for the

2I£ arecipr:aa 11 n-a'ntok h h erminated in the

.1. ~ ~ ~ ~ 0 d, cI e'v-eedntlol caili es the' preCscribed transducer power-gain

z (continue on reverse side)

2101 DSTRIBuTON /AVAILABILITY OF ABSTRACT 21. AB3STRACT SECURI-Y CLASSIFICATION

T1,1I:CLASSIFIEDIUNLIMITED 0 SAME AS RPT 0 OTIC USERS Unclassified

*228 NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include AeCd) 2c_ OFFICE SYMBOL

DO FORM 1473,s 1AA 83 APR edition may be uiaduntiSexhausted SECURITY CLASSIFICATION OF THIS PAGE
AJI other edtions are otnolete UNCLASSIFIED

ZA

0 7
V" %7'6 

&



UNCLASSIFIED
119cuIaP'v CL.AuIPIcA~lO o. Tiis PAa

4- 3) Study the relationships between the broadband matching of many ports and the design
theory of multiplexers and apply the known results in the theory of broadband
matching to minimize the interaction effects of the individual channels.

'I.

_UNCLASSIFIED

SECURITY CLASSIFICATION OF T.I$ IPAGE



FOREWORD

This is the final technical report submitted to the Department

of the Air Force, Aeronautical Systems Division/PMREC, Wright-PatLerson

AFB, Ohio, by University of Illinois at Chicago, Department of Electrical

Engineering and Computer Science, Chicago, Illinois, under contract

entitled, "Broadband Matching of Multiport Electrical Networks with

Applications," F33615-84-K-1556/P00004. The personnel supported by the

contract included the following:

Dr. Wai-Kai Chen, Principal Investigator

1i Dr. Wolfgang-M. Boerner, Professor

Mr. Zhao-Ming Wang, Visiting Scholar and Associate Professor

* Mr. Yi-Sheng Zhu, Visiting Scholar and Associate Professor

Mr. Bing-Yuen Foo, Ph.D. Research Assistant

Mr. Matthias Walther, M.S. Research Assistant

Mr. Jonas Okeke, M.S. Research Assistant

Mrs. Victoria Zapatka, Project Coordinator

Accesiori For

NTIS CRA&I
[,TIC TAB ]

-Uarinouriced 0

BEy

- *.' jy or

/

S
-~5



TABLE OF CONTENTS

Section Page

1. Introduction ........ ...................... I

1.1 Existence of normalized scattering matrix ..... ......... 3
1.2 General matching theory of many ports .. ........... 11

1.3 General design theory for multiplexers .. ........... . 13

2. On Complex Normalized Scattering Matrix and Its
Application to Broadband Matching of Multiport
Networks ......... ........................ 17

2.1 Introduction ......... ........................ 17
2.2 Preliminary considerations ..... ................. . 19
2.3 Main result ......... ........................ 23
2.4 Construction method of scattering matrix .. .......... . 25
2.5 Example ........... .......................... 28
2.6 Proof of Theorem 2.2 ....... .................... 34

2.7 Conclusion .......... ......................... 39

3. On Lossless Reciprocal and Nonreciprocal Matching
Networks of an Active Load ..... ............... . 40

3.1 Introduction ......... ........................ 40
3.2 Preliminary considerations ..... ................. . 41
3.3 Main result ......... ........................ 45
3.4 Illustrative example ....... .................... 52

3.5 Coefficient constraints ...... .................. 60
3.6 Conclusion .......... ......................... 66

4. Realizability of Compatible Impedances Using
Transformerless Ladder Two-Port Networks ......... . 67

4.1 Introduction ......... ........................ 67
4.2 Realizability of LC-R ladders .... ............... 68
4.3 The compatible impedances ...... ................. 69
4.4 Design procedure and illustrative examples .......... . 72
4.5 An outline of a proof of Theorem 4.2 ... ............ . 78
4.6 Conclusion .......... ......................... 82

5. A New Diplexer Configuration Composed of a
Three-Port Circulator and Two Reciprocal

Two-Port Networks ....... ................... 84

5.1 introduction ......... ........................ 84
5.2 The scattering matrix of a nonreciprocal diplexer ..... 86
5.3 Butterworth response ....... .................... 90
5.4 A diplexer composed of a circulator and the canonical

Butterworth networks ....... .................... 97
5.5 An outline of a proof of the positive-realness

of Zl ..(s) ........ ......................... 106

5.6 Conclusion ............ ......................... 107

J.



Section Page

6. A Multiplexer Configuration Composed of a Multi-Port
Circulator and Reciprocal Two-Port Networks ...... . 109

, 6.1 Introduction ......... ........................ 109

6.2 The scattering matrix of a nonreciprocal multiplexer . . . 110

6.3 Realization of a multi-port circulator . . . . . . . . . . . 115

6.4 Design procedure and illustrative examples .......... . 119
6.5 Conclusion ......... ......................... 124

7. The Design of a Symmetrical Diplexer Composed of

-. Canonical Butterworth Two-Port Networks . ........ 126

7.1 Introduction ........ ........................ 126
7.2 Transducer power-gain characteristics of a symmetrical

diplexer .......... .......................... 128
7.3 Illustrative examples ................... 135
7.4 Conclusion ......... ......................... 145

8. On the Design of a Diplexer Having Butterworth
Characteristics ...... .................... 146

" 8.1 Introduction ........ ........................ 146

8.2 The scattering matrix of a diplexer ... ............ 148
8.3 Butterworth response ...... .................... 153

- 8.4 Illustrative examples ...... ................... 161Refe.5 rCnclus.......................................... 169
8.5 Conclusion ............ ......................... 169

Bibliography ........ ........................ 177

Appendix A: Program Package for the Design of Diplexers 178

p, Appendix B: Program Package for the Design of

Multiplexers ..... ................. 191

Appendix C: Program Package for the Design of Diplexers 200

Appendix D: Program Package for the Design of Filters,

Diplexers and Multiplexers .......... 212

vi

%. %



Section I

INTRODUCT ION

A fundamental problem in the design of communication systems is

to realize a lossless coupling network between a given source and a

given load so that the transfer of power from the source to the load

* is maximized over a prescribed frequency band of interest. We refer

to this operation as impedance matching or equalization, and the

resulting coupling network as matching network or equalizer.

The matching problem was initiated by Bode [2] in the study of

coupling networks for a class of very useful but restricted load

impedance composed of the parallel combination of a capacitor and a

resistor. He established the fundamental gain-bandwidth limitation

-- for this class of equalizers, but did not go further to investigate

the additional limitation imposed on the lossless equalizers by the

load. Fano [24] extended Bode's work, and brilliantly solved the

impedance matching problem between a resistive generator and an

arbitrary passive load, in its full generality. The key idea under-

lying Fano's solution is that of replicing the load impedance by its

Darlington equivalent. The results on physical realizability are

then transformed into a set of integral relations involving the

logarithm of the magnitude of the reflection coefficient. Never-

* theless, Fano's approach, although very ingenious and elegant, suffers

two main drawbacks, both from a practical and theoretical viewpoint.LI First of all, the replacement of the load impedance by its Darlington

* equivalent leads to the complications of translating certain of its

properti('s into structurAl properties of its associated Darlington.

Sc, ond ly, since Darlington' a theorem is valid on v for passive

impt,dLint e, t he tehchnique cannot he extended to the design of general

%S %
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active equalizers. With the advent of solid-state technology and its

apparently unending proliferation of new devices .such as the IMPATT

diode and the GaAs FET, this consideration can ) longer be ignored.

Based on the principle of complex normalization of a scattering

* . matrix [56,59], Youla [58] developed a new theory that completely

circumvents the two main objections encountered in Fano's work.

Since Youla's method deals directly with the load, it is much simpler

to apply. In fact, his theory was generalized by Chan and Kuh [6]

to include the situation where the load impedance is active.

* :.: Both matching theories indicate the many directions of extensions.

Since Fano and Youla's equivalent of a source system is represented by

a single resistance, the restrictions imposed by the complex source

system are not present in their work. Thus, a clear extension is to

allow frequency-dependent source impedance as depicted in Fig. 1.1.

This was recently solved by Chien [21], Chen and Satyanarayana [19,46]

and Chen [16], who derived necessary and sufficient conditions for the

physical realizability of the matching network in terms of the para-

meters of the known load and source impedances and the desired trans-

ducer power-gain characteristic. Chien's conditions guarantee the

.4,

equalzer
+ Z2(8)

N
Vg

Z1 1 (sJ Z22

. 1i:. I.1. Schematic of Broaidband Matchinp between

Arbitrarv Source and Load lmpednreM.
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physical realizability of the scattering parameters so constructed,

thus insuring the existence of the desired matching network. The

actual realization of the equalizer is accomplished by realizing

its scattering matrix, using standard techniques developed elsewhere.

Chen and Satyanaravana's result [19,461, on the other hand, provides

a direct means of constructing the equalizer. Specifically, they

demonstrated that with appropriate choice of some regular all-pass

functions, the equalizer back-end impedance is first realized as the

input impedance of a lossless two-port network terminated in a 1-ohm

resistor. By replacing the 1-ohm resistor by the source impedance,
€-

we obtain the desired matching network. Needless to say, the broad-

band matching problem has been discussed and elaborated upon by many

workers [4, 7-15, 18, 30, 34-36, 481. The extension of the theory to

frequency-dependent source and active load is very recent and is given

by Chen and Tsai [20].

The present research is a direct extension and generalization of
'a

the work reported in the foregoing. The major point of departure

arises from the difference in the number of accessible ports of the

matching networks. Here we investigated the broadband matching problem

of many ports. The significance of the work is that it enables us to

-a,

stadv I ssv two-port networks as well as to design channel multiplexers.
4a.

For example, a lossy two-port matching network containing n-2 resistors

can be considered as a lossless n-port matching network with n-2 of its

ports terminated in the resistors.
':

1.I Existence of normalized scattering matrix

Referring to the n-port network N of Fig. 1.2, let [14,56,59]

s(s) = 1I. .1j (1.1)

3
1%
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"' Fig. 1.2. Schematic of General BroadbandMatching of an n-por Network.

. .- be its scattering matrix normalized to the reference impedance

Z(s) 
= diag [z I(s ) ,  z 2(s), ... n (s) (1.2)

' each of its elements being a non-Foster impedance. Write

.D_ S.,(s) S'(s),(1.3)

2'.

.) where the prime denotes the matrix transpose. Th, p~r-hcrmitin

Fig. 1.p2rt of z(s) is d Shfined as

z"s r(s) [z (s) + z , (s) Z (1.4)

.. rh to ri t s (, h di,em oit al element of r(s) as the pr.du t hk(s)hk (s)

S4

- t
. .A 

%.. ( s 
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such that hk(s) and hk*,(s) are analytic in the open RUS (right-half

of the complex-frequency plane), where h (s) h(-)anexrsk* - k(~ n xrs

Z(s) accordingly

r(s) = h(s *(s), (1.5)

where

h(s) = diag [h1 (s), h2(s) ...... hn(s) .  (1.6)

Then we can show that

Z(s) = Us)L*)- 2~)~~~) (1.7)(s 2-hs)y sls

where Y (s) is the admittance matrix for the augmented n-port network

N, as shown in Fig. 1.2.

0 The scattering matrix S(s) thus defined has the following remark-

able attributes:

(i) S(s) is rational.

(ii) S(s) is analytic in the closed RHS.

(iii) 1n -SL*(s)Ss) is hermitian and nonnegative-definite for

all s in the closed RHS, where S*(s) denotes the transpose

conjugate of S(s) and I the identitv maitrix of order n.

(iv') S(s) is a real for real s, i.e., S(s) = S(s).

(v) If N is loss less, S(s) is para-onitary, i.e., S*(s)S(s) =

(vi) if N is reciprocal, S(s) is symmetric, i.e., S' (s) =S(s).

(vii) rho transducer power gait tG (w"-) Irim port i to port k
ik

. under the matcihed cotij iti it is given h\

GO, (;k( 
2 )  

Is ki (,,)1
2  

( .

III,, pr , irt i,.s ,t ,(s) ire al1 i cesstri lv t II,, but Itrt v ire

Ft i.l ii t , ' g riin'i*, thait m reit ri:.; wit Ii t -s, propcrt it's it ic, -

ri H 7i , ta- l l I tt, rirIg I, itrix I ' l l ic si i F t , it-otrI
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network normalizing to the reference impedances z1 (s), z2 (s),

z (s). The necessary and sufficient conditions for the existence ofn

such a matrix is given below.

Theorem 1.1: (Wohlers [54]) The necessary and sufficient con-

ditions that an n x n rational matrix be the scattering matrix of a

lumped and passive n-port network normalized to the n non-Foster

positive-real impedances z1 (s), z2 (s), ... z n(s) are that:

(i) 1 - S*(jA)S(JW) be nonnegative-definite for all real u;

(ii) the matrix defined by the relation

Y (s) = -2h-I(s)[h(s)h, (s) - S(s)]h - (s) (1.9)a

be analytic in the open RHS, where h(s) is a factorization of the para-

hermitian part r(s) = h(s)h,*(s) of the reference impedance matrix

z(s) = diag [z (S), Z (S), ... , z (s)] such that h(s) and h I(s) are
1 2 n

analytic in the open RHS;

(iii) either

(a) det {I - [Z.(s) - I nY (S)} # 0 in the open RHS, or

(b) the matrix defined by the relation

[(s) =z(s) - I (s)}[z(s) + 1 (1.10)~n [z1 la• - n 0

have at most simple poles on the real-frequency axis with nonnegative-

definite residue matrix.

In addition, if the network is reciprocal, the matrix S(s) must

he symmetric. This result is computationally very difficult to apply.

Nevertheless, the theorem is of fundamental importance in its own

right. It forms the basis of the approach to the solution of broad-

band matching botween two frequency-dependent impedances as reported

by Chien 1211 and (hen and SatvanaraN'ana 119,461. It is also essential

hn[ a h6
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in the formulation of the compatibility problem of two positive real

impedances, as demonstrated by Wohlers [54] and Ho and Balabanian 1331.

We propose to investigate and develop alternate and more tractable

conditions that would alter our viewpoint on this and many other proh-

lems. The conditions will be formulated in terms of the coefficients

in the Laurent series expansions of the functions derived from the

reference impedances zk(s). An outline of this approach will now be

described.

Refer to the n-port network N of Fig. 1.2. Let

S(s) (1.11)

be its current-based scattering matrix. Then we have [14]

S(s) = h(s)s (s)h*l(s). (1.12)

If Z kk(s) denotes the impedance looking into port k with all other ports

being terminated in their reference impedances, then from (1.12) we

have

hk(s) Zkk(S) - Zk,((S)

kk h k (S) Zkk(S) + zk(S)

* We recognize that hk(S)hi(s) is a real regular all-pass function, whose

poles include all the open LHS (left-half of the complex-frequency plane)

poles of the reference impedance zk(s). Thus, it can be written as the
Ak

product of the real regular all-pass function

w s Ski

A (S) =I i - - (1.14)Ak(S s + s ki

7
.0
I



defined by the open RHS poles s i (i =1, 2, ... , w) of zk(-s) and

":' another real regular all-pass function nk' that is

hk(s)/hk(-s) = nk(s)Ak(s). (1.15)

Now observe that since

SI(s) Zkk(s) - zk( - s) (1.16)
," Zkk(S) + zk(S)

the open RHS poles of S I(s) are precisely those of zk(-s), the function

defined by

.# #'-% 0k(S ) = Ak(s)Sks I.7

* is analytic in the closed RHS. In other words, pk(s) is bounded-real.

Write

Y (s) = [Yija . (1.18)

Then from (1.9) we have

2 y ija (S) = -S ij(s)/hi(s)h j (s) (1.19)

for i j, and

r % yjj(S) =1-h (-s)S (s)/h (S)

jja 2h.(s)h (-S) hj Sjj
• i

y (s) (

2r (s)Aj (s) -

ir

. A. (s) - p.(s)
-..- (1.20)

F.(s)

4. 8

%?



%
where

F.(s) = 2r (s)A(s). (1.21)rJ J J

Following Youla [581, we call a closed RHS zero of multiplicity

-• m ftefnto rk(s)/ Z k ( S ) ______________
of the function zk(s) as a zero of transmission of order m of

the impedance z k(s), and divide the zeros of transmission sOk of Z k(s),

written as sOk = G0 k + jW Ok' into the following four mutually exclusive

classes:

Class I zero: a0 k > 0,

Class II zero: aOk 0 and zk(S~k) = 0,

Class III zero: a0k 0 and 0 < IZkk <
= 0 and Ik(Sok) l <

% Class IV zero: Ok 0 and lzkjs0Qj

* The notion of an inherent restriction on S(s) emerges immediately

from (1.19) and (1.20). Since S(s) is analytic in the closed RHS, the
,P%

closed RHS poles of Y (s) can occur only at the zeros of transmission

of the reference impedances zk(s). In other words, if Ya (s) is the

admittance matrix of a physical n-port network, then the real-frequency

axis poles of y ija(s), i#j, can occur only at the real-frequency-axis

zeros of h.(s) and h.(s) and S. .(s) must contain all the open RHS zeroszeoso his n j 1j

of h.(s) and h.(s), to at least the same multiplicity; and every zero

of transmission of z.(s) must also be a zero of A.(s) - P (s). Stated.1' : J J J

* -differently, regardless of the choice of the n-port network N in

Fig. 1.2, there exist points soj in the closed RHS, dictated solely by

-the choice of the normalizing impedances z.(s), such thatJ

' A.(soj) = pj(s 0 j), = 1, 2, ... , n. (1.22)

4-.. Recall that A.(s) are completely specified via (1.14) by the open RHS

poles of z.(-s).

9
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VThese restrictions are most conveniently and compactly formulated

'4" in terms of the coefficients in the Laurent series expansions of the

functions Aj(s), pj(s), F.(s) and S ij(s)/hi(s)h (s) about a zero of

transmission s0k of zk(s):

.01 Wx

AJs)(S) axj - sOk) , (1.23)

x=O

.04

x
p.(S) -( (1.24)

x0

4.,

Fj(s) f . (s - x (1.25)

S ij(s)/hi(s)hjs = qx (S - Sk) , (1.26)

where i,j =1, 2, ... , n. For example, at a Class I zero of transmission

s Ok of order m, for y jja(s) to be analytic in the open RHS, A.(s) -pj(s)

must vanish at sOk to at least the same multiplicity, yielding

axj = px j , x = 0, 1, 2, ... , m- I. (1.27)

At other classes of zero of transmission, similar coefficient constraints

can be obtained. However, they are much more complicated than those

suggested above. We will derive a set of coefficient constraints that

are both necessary and sufficient for a real rational matrix to be the

scattering matrix of a lumped passive n-port network normalizing to the

n prescribed non-Foster positive-real impedances /l(s), z 2 (s), ... Zn(s).

10
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1.2 General matching theory of many ports

Having successfully developed an alternate and more tractable

set of conditions that chracterize the normalized scattering matrix,

we shall now apply it to study the general matching problem of many

ports. To be definitive we shall consider the following problem.

Given n arbitrary non-Foster positive real rational functions z1(s),

*z 2 (s), ... z (s) as the internal impedance of the generator and the

2
load impedances and given a set of real rational functions Gi (W

i#j, bounded by unity for all real w, as the transducer power gain

from port i to port j, the problem is to determine conditions under

which there exists a lossless n-port network, which, when terminated

2
in these impedances, will realize the prescribed set of Gij ( ). The

approach will be described below.

Refer to the n-port network of Fig. 1.2. Let S(s) of (1.1) be

its normalized scattering matrix. Assume that the n-port network N is

reciprocal and lossless. Then in view of the complex normalization

concept discussed in the foregoing, S(s) is symmetric and para-unitary

and imbeds the given set of transducer power gain characteristics

Gij (W 2). Hence, we shall first construct the most general symmetric

Pr 2para-unitary matrix S(s) from the given set of Gij (w ). Then from

physical realizability conditions obtained earlier on S(s), we can

-~ 2introduce constraints on G ij (w ) such that S(s) is indeed physically

realizable. Note that not all the transducer power-gain characteristics

,'. Gi (w) can be specified independently; only n-I of them can be pre-
ii

*. assigned by the designer.

The symmetric and para-unitary conditions on S(s),

S(s) = S'(s), (1.28)

S.(s)S(s) = 1 n , (1.29)

% %.,1
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yield, in expanded form,

S ij (s) = S ji(s), i, = 1, 2, ... n, (1.30)

~n

E Sji (s)S jk(S = 6 ik (1.31)=1 =kIi

*1~l

where 6 ik is the Kronecker delta and i, k = 1, 2, ... , n. Moreover,

we have

Is ik(Jw)12 = G ki(W2 i # k. (1.32)

On the real-frequency axis, (1.31) and (1.32) become

n

ISii(Jw) 2 = 1- Gik(w 2 ), i = 1, 2, ... , n. (1.33)

k=l
kii

Hence, the gain functions G ij(W 2 ) determine uniquely the magnitude of

S ij (s) on the real-frequency axis. The phase of these functions, which

cannot be determined from G..(W 2), may be represented by real regular
ij

-. all-pass functions. Appealing to the theory of analytic continuation,

2let p.. be the minimum-phase factorizations of Gj.(-s ), i j j, or

I - ,ik(-S 2 i = j. (1.34)

k=1

k#i

Then the most general solution of (1.32) and (1.33) that is analytic in

the closed RHS is given by

S ij(s) = ij(s) .ij(s), i, j = 1, 2, ... , n. (1.35)

This together with S..(s) = S (S) gives the most general firrm of the-V. 'i L i (

scattering parameter representation of a lossless reciprocal n-port

network normalizing to z 1 (s), z 2 (s), ... Zn (s) which imbeds the given

12
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set of transducer power gain characteristics C i(W ), iij. However,
1]

not every tepresentation of this form is physically realizable, and

the solution to the n-port matching problem reduces to the question

of the existence of a set of real regular all-pass functions n. (s)

so that the matrix S(s) is realizable. Thus, by examining the coef-

ficient constraints imposed on S(s), we can arrive at a complete

solution to the matching problem of many ports. These result in a

set of coefficient conditions that are necessary and sufficient for

the existence of a lossless reciprocal n-port network, which, when

terminated in the given load impedances, will realize the prescribed

transducer power-gain characteristics.

* 1.3 General design theory for multiplexers

As a consequence to the above solution of the broadband matching

problem of many ports, we can design a lossless reciprocal n-port

network that matches a frequency-dependent source and n-I frequency-

dependent loads with a priori apportionment of average power over a

preassigned band of frequencies. The situation occurs in typical

antenna applications, where a single generator drives n-I frequency

sensitive loads. The constraints imposed on the transducer power-gain

22characteristics G k ) = Ski (ju)l are expressed in terms of the

maximum allowable voltage standing wave ratios

I1+ Is.(ju) I
(1.36)

1 - ISii(Jo)[

In this case, the synthesis of the n-port network must be carried out

with prescribed bounds on the ISi(ju)i. The preceding solution also

allows the study of the effect of loss on the gain-bandwidth product

13
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of a two-port matching network, because a lossy two-port matching

network can be viewed as an n-port with n-2 of its ports being ter-

minated in resistors.

A multiplexer is a device that splits a single channel carrying

many frequencies into a number of separate channels carrying narrower

bands of frequencies. It might at first appear that the design of a

multiplexer could easily be accomplished by designing the band-pass

filters using any of the many known techniques, and then connecting

-' these band-pass filters in parallel. Such a procedure does not work

well because of the undesirable interaction between the filters, which

could result in very poor performance. To avoid this difficulty, many

techniques have been proposed to eliminate such undesirable interaction

effects [43-45].

An important practical configuration for the multiplexers makes

use of the constant-resistance filters. Filters of this kind, when

all designed for the same terminating resistance, can be cascaded as

shown in Fig. 1.3 to form a multiplexer which in theory completely

avoids the filter interaction effects mentioned above. Each filter

provides the proper termination for its neighbor, so that to the extent

that there ore no residual voltage -tanding wave ratios and manufacturing

fl f 2 f 3f f 5

input signals f' :'fff6
f f f6

.f4 , f5' f6~..4,.,
Fig. 1.3. Constant-Rc sistance Filters U1sed for

MuI t ip Iexing.
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* imperfections, the structure is reflectionless. However, in reality,

each filter will generally have some parasitic voltage standing wave

ratio, which will affect the system significantly if many filters are

to be cascaded. Thus, to design a good multiplexer we must consider

frequency-dependent load. Instead of using constant-resistance filters,

we investigated the notion of constant-impedance filters, which, when

connected in cascade to form a multiplexer, will take into account of

the parasitic effects of the elements. This formulation is closely

related to the broadband matching of two frequency-dependent impedances.

Another common configuration [44] for the multiplexers is shown in

Fig. 1.4 where n specially designed band-pass filters are connected in

e YI Zl'__ channel r 1r

+ V. j channel2 r

V Z2  J r2

susceptnce
p e a onnullingnetwork

Fig. 1.4. A Parallel-Connected Multiplexer.

ql parallel. A susceptance-annulling network is added in shunt to hellp

provide a neirly constant total input admittance Y t which approximates

the source conductance I/r 0 across the operating band of the multiplexer.

Figure 1.5 shows the analogous situation of a series-connected multiplexer.

15
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Sreactonce channel1 I ri
~annulling

network

"channel 2 r.

0--

%'

",' channeln r

/"' Fig. 1.5. A Series-Connected Multiplexer.

...

pprinciples apply to both. Therefore, out attention will be confined

exclusively to the shunt case,

,b.,

M i  Each channel in the parallel configuration of Fig. 1.4 is a

~specially designed band-pass filter. When these band-pass filters

%,) are connected in parallel as in Fig. 1.4, they eait be represented by

their input impedances z. Instead of using the annulling network,

, the problem may be viewed as broadband matching of frequency-dependent

'4k.

oads and a resistive source. In the present research, we studied the

relationships between the broadband matching of multiport 
networks and

V ..s the desigi theory of multiplexers, and applied th known results in the

theor of broadband matching to minimize the intraction effects of

the individp wl channels.

01
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Section 2

ON COMPLEX NORMIALIZED SCATTERING MATRIX AND ITS APPLICATION

TO BROADBAND MATCHING OF MULTIPORT NETWORKS

- I. Introduction

-~ The necessary and sufficient conditions that an n x n matrix be

thle scattering matrix of a lumped, lossless n-port normalizing to n

- non-Foster po-,sitive-real impudances are presented in matrix form in

V ~ermsof coot ticients of the Laurent series of the parameters. Also,

* a method is introduced for constructing a generalized scattering

e matrix of a lossless reciprocal n-port equalizer from the preassigned

t ransdu1Cer power-gain characteristics and a set of n passive

terminations.

The Sigii ficanICe Of this work is that it provides a means for

t te st ing t he rca liz ab i I i tv o.)f an n x n sc at te r ing mat r ix by dealIi ng

w4it h t hr- i-oetic ient s of thle Laurent series expansions of thle para-

mt , r s. Ani example of a three-port network is given to show the

IrrCdUre for construct ing N Scattering matrix pos;sess ing the para-

un it ar% p ropetr t V, anld achieving tihe p reass ignied trmantsd uc em pnwe r-gait

charic tecrist ics when it is terminated in the givent impedances.

ThiS set ion St idies thle broadband matching p~roblecm of mul tiport

*n netwo rks. Tefirst part presents the necessa ry and su ffic i(en t Conl-

d it ions under whtich a rat ional1 n xn matrix S (s ) hr thle scatter ing

maItrix (,f aI !lmped'(, loss less it-port equalizer terminaited in a ,ct

6. Of pos it ive realI impedances. The resutlts are shown in matrix form

inl Ierms, of th e cle ff i c ienIts L'Of thte Laurent series expans ions thle

pr, me t Lr,. TIhese, crud it ionr are d irect ly ;ipp 1 ira:b IL' to thle real I i zat-

ion (,f 'i loss less, rec iprocalI n-por t eq uali ze r f rom a g iven mat r ix

4.. - -isind a givfen ,-et' (f posit ivc reail impedainces. Ihe se-cond par

4...
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inatroduces a method for constructing a generalized scattering matrix

*i S s) of a lossless reciprocal n-port equalizer from the preassigned

t ransducer power-gain characteristics and a set ot n passive impcdances,

which satisfies the para-unitary condition. By imposing the physical

rcalizability requirements for a scattering matrix, necessary and

s_-ufficienlt conditions of a lossless reciprocal n-port equalizer ter-

mi:-.,tted in n passive impedances satisfying the preassigned transducer

%,,wr--ain characteristics are established.

In an earlier study of the broadband matching problem, Youla 158]

JtdvcLt,pL.d a ncw theory of broadband matching an arbitrarv load to a

re ,sistivc generator based on the principle of complex normalization.

O W.irs 541 of f-red an existence theorcm of an n n s-at tering matrix

I uMped, passive n-port normalized to n non-lFoster positive-real

.p.* i:n;-1ad s. Chien [211 derived the necessary and stfficient conditions

i t he' re I izab i 1 1t v of a, two-port network having preass igned t rans-

it: I.r power-"Ain characteristics bY constrnct ing a scait tring matrix.

1) r1 prsc 1t .d I uni flid theory from the point of view of

i::T;,,.d ii' sLpk it i I I it\. Thi is sect i(n devC lops the real izabi Ii tv

-'" i t : iions I r lsslCss multiport ais an extension of a double-port

I: p,, ri, riph 2.2, we give pri Iliminarv tonsiderat ions. In para-

3 , grtIpIo 2.3, th nL', Lssrv nnd suffic ient condit ions that a rational

:i matrix i - .i s,: attering matrix are derived. In paragraph 2.4,

A Mic[to-t :)r (,n-StrIi't ing I gteneral ized scattering mat rix is intro-

. ;- ,. and rc lizability cinditions Of the lossless reciprocal n-port

i/,,r ir., dis, ussed. Paragraph 2.5 prisents in example to show

t t h, d,>i n pruted re.

18
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2.2 Preliminary consider d ions

-Consider the n-port network N of Fig. 2.1 with n non-Foster

positive-real terminating impedances z .(s) (i = 1,2,... ,n). Write

.z(s) = diag [z1 (s), z2 (s), ..., z (s)] (2.1)

The scattering matrix normalized to the reference impedance matrix

z(s) is written as

S(s) = [S ij(s)]nx n  (2.2)

The even part of z(s) (i=1,2,...,n) is

r (S) = [zi(s) + Z ](-s), = hi(s)hi(-s) (2.3)

where the factorization is to be performed so that h (s) and h. (-s)

v,, N

vo
2

" Fig. . 1. Schematic- Diagram ot- an n-port

."Network N arid the Augmented n-p rtNetwork N

+a

Vi! "  d iag denotes di agona i mat r ix 19
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analytic in the open RHS. H(s) is written as

H(s) = diag [h (s), h2(s), ... , hn(S)] (2.4)

Define two regular all-pass functions A(s) and B(s) as

1i s-a,
A (s) = rl -_I Re a. > 0 i = 1, 2, .... n (2.5a)

1 I s+a.

v i s-b.

B (s) = fl _ _ Re b. > 0 i = 1, 2, .... n (2.5b)
i j=l s+b j!j

where a. (j =1,2,...,u i) are the open RHS poles of z.(-s) and b.

(j =1,2,....vi) are the open RHS zeros of ri(s). Thus,

h.(s)
1 i (-S = A i(s)Bi(s) (2.6)

hi(-s)

Define

Fi(s) = 2ri(s)Ai(s) I = 1, 2, ... , n (2.7)

Definition 2.1. The closed RHS zeros of multiplicity ki of the functioni r. (s)

1s are the zeros of transmission of order k. of z.(s). Furthermore,
z. (s)1 1

1

, a zero of transmission so of zi (s) is said to be a

Class I zero if Re s 0 > 0

Class II zero if so = J0 and z (jW0 ) = 0

Class III zero if so= jW0 and 0 < Izi(jw 0 <

Class IV zero if so = jA 0 and zi(JOW0 )1

Definition 2.2. Zeros of transmission so of zi(s) (i =1,2,...,n) are

called the normalization zero of the n-port network N.

'p_ 20
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Definition 2.3. Let ZN(S) be the open-circuit impedance matrix of

an n-port network and z(s) the reference impedance matrix. The

Augmentation admittance matrix Y (s) is defined as

Y (s) = [Y. (s)] = [ZN(S) +z(s)] (2.8)
-a -j N

As indicated in [14], the normalized reflection coefficient at

port i, S. (s) can be expressed as

Sii(s) = Bi(s)Pi(s) i = 1, ?, ., n (2.9)
11 1 1

The matrix Y (s) is constructed by using-a

Y (s) = 12H ()[H(s) (s) - S(s)]H (s) (2.10)

Invoking (2.7) and (2.9), gives

A I (s)-p 1 (s) S12 (s) Sin(s)

FI (s) 2hI (s)h2 (s) 2h I (s)h (s)

Y (s) = (2.11)

S(S) S (s) A (s)-p (s)
nI n2 n n

2h (s)h1 (s) 2hn (s)h2 (s) Fn (s)

Ai(s), Pi(s), and Fi(s) (i=1,2,...,n) are expanded in the Laurent

series about a zero of transmission s . Thus

Ai (s) Ax,(S-So) (2.12)

P (s) = xi (S-S) (2 -13)

ai x=O

_, f (s) = (-s)

%21
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Fi(s) F x (2.14).' =~ Fi(s-s0 )

x=0

If sO=°, then (s-s0) is replaced by I in each of (2.12) and (2.14)

The augmentation admittance matrix Y (s) can be expanded as

Y(S) = 2x(,) (S OX (2.15a)

where

() [q "ju)] (2.15b)

and u refers to either class II, III or IV.

" - - Dente the rsidue matix of imedances is)aaClsIVzr

of transmission s =jwo by

A_, = diag [a_, l ..... a_ n ] (2.16)

The necessary and sufficient conditions for the normalization

impedances zl(s), z2 (s), ... , z (s) and the nxn matrix S(s) to be

compatible are given in the following theorem which was first

presented bv Wohlers [54].

Theorem 2.1 (Existence Theorem)

The necessary and sufficient conditions that an nxn rational

matrix be the scattering matrix of a lumped, passive n-port nor-

*% e malized to n non-Foster, positive-real impedances are:

U.S(jW)S(j) be nonnegative definite for all w.

% 14- 2) Y - H 1 (HH* - S)H be analytic in the open RHS, and,
JWr-a - hoe Had

e ither,

.t
-n is the n x n identity matrix. S*(jid) S' (-jo) and prime denotes

,r the transpose of a matrix.

" A 22
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3a) det [Un - (zU)Y ] # 0 t in the open RHS, or,

3b) the matrix [U - (z-U )Y ](z+U) have simple poles on the

real-frequency axis, and the matrix formed with residues at

each of these poles be nonnegative definite.

2.3 Main result

In this portion, we present a generalized theorem for a multi-

port matching network in which the coefficient constraints are exp-
-.4

ressed in matrix form in terms of the Laurent series expansions.

Theorem 2.2

Given a real rational nxn matrix S(s) and n non-Foster positive-

real functions zl(s), z2 (s), .... and z n(s), the necessary and

*sufficient conditions for the matrix S(s) to be the scattering matrix

of a lumped, lossless, n-port network normalizing to the impedances

z(s), z2(s), ... , and z (s) are1' 2 n

1) S*(jw))S(jw) = U for all wj (2. 17)

2 Y (s)s) )

2) Y S (s) [H(s) i (-s) - S(s)]H (s)

' be analytic in the closed RHS and its off-diagonal

elements Yij (i,j=1,2,...,n iOj) have at most simple

poles at the jw-axis normalization zeros.

3) pi(s) satisfy the coefficient constraints

Axi = x = 0, 1, .... m.-1 (2.18)

i i 1 , 2,.. n

where

S.I k. for Class I, II, or IV

k. -1 for Class III
* ..

tdet denotes the determinant of a matrix.

23
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4) at every jw-axis normalization zero so = jW0 ,

i) If Iz (w )I < i=1,2,...,n then

* i 0

Q 1 (u) > 0 (2.19a)

where u refers to Class II or III and

i;~ %'-Pm'

q_lii(uu) - F1i i=1,2,.... n (2.19b)

(ii) If izi(Jw0) = 00 i=1,2,... n then

(a) Ql(u) Q0 (u) = 0 and (2.20)

.- 1n

(b) [AZ1 - Ql(U)] > 0 (2.21a)

where u refers to Class IV and
'.-

A -P
m. in.i

q1 .ii (IV) = F 1 i=1,2,... n (2.21b)

(iii) If jz(jwo0 )j = £=1,2,...,k and

Iz ( W 0  < p= k+, k+2, n then

(a) Q_-1,p 9= (2.22)

(b) Q_1,£a,(IV) =Qo' a(IV)=0 £,' =1,2,...,k (2.23)

k n-k

k A- - 1 ,(IV) -Q0,Rp

(c) ------------------ -------- > 0 (2.24)

n-k Q Q- (u)

where u refers to Class II or III.

t 0 denotes the nxn zero matrix and > 0 denotes the nonnegative definiteness.

A-0,ttQ denotes the submatrix of _ with subscripts Z and p.

24
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The proof is given in Section 2.6. By applying Theorem 2.2, we

can test to see whether or not a given n x n matrix is the scattering

matrix of a lossless n-port network terminated in n given passive

impedances. In many practical situations, the design of a lossless

reciprocal equalizer to match out n arbitrary passive impedances is

required. The design procedure is divided into three steps. First,

0d we construct a scattering matrix in its most general form. Second,

we apply Theorem 2.2 to determine the realizability of the scattering

matrix. Finally, the desired matching network is obtained by

realizing this scattering matrix, applying any of the known multiport

synthesis techniques [39].

2.4 Construction method of scattering matrix

In this portion, we study the construction of a scattering matrix

in its most general form for a lossless reciprocal n-port. The scat-

tering matrix of a lossless n-port must have para-unitary property.

Hence, we need to construct a para-unitary scattering matrix within

arbitrary all-pass functions based on the preassigned transducer power-

gain characteristics and n terminations. Using this general form of the

scattering matrix, Theorem 2.2 gives the necessary and sufficient con-

ditions for the existence of a lossless, reciprocal n-port equalizer

-terminated in n passive impedances satisfying the preassigned trans-

Mducer power-gain characteristics.

From the para-unitarv property of a lossless, reciprocal n-port,

-(s)S,(s) = U (2.25)

we obtain

n

* Sii(s)Sii,(s) + S. i (S)Sij, = 1 (2.26)

j =1
j#i

25
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n

S(ik (S)S kj*(s) = 0 i = 1, 2, ... , n-I (2.27)

k=1 = i+ ..... n

where S.. = S... From the given transducer power-gain characteristic

G(w 2 ), we have

C ij (W 2) I ji(Jw)!2 (2.28a)

where

e G 2 0 <wm< and
0 < j( ) < 0 - (2.28b)

j=i = 1, 2, ... , n

C, Factorizing G..(-s 2  obtains

G. (-s2) e i. (s)P ij,(s) (2.29)

1j Qij (s)Qij*(s)

where Qi (s) and Pi (s) are Hurwitz polynomials. Then

'.P.i (s)Pij,(s)
Si (s)Si .(s) = (2.30)
i i1* Qij (s)Qij, (s)

From (2.26)

nU i (s)Ui (s) (2.31)
0 .i(s)Sii,(s) - I - ij-2 = Qis)i,*

11 i* E =j Q.(s)Qi* (S) (.1
j #1

whcre U (s) is a Hurwitz polynomial. According to [14],

S.,(s) = O..(s)Bi(s)pi (S) = .i(s)sii(s) (2.32)

S..(s) = 0.j(s)B.(s)B(s)s ijm (S) = 0.j(s)si .(s) (2.33)

26
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where 8.. (s) and 6.. (s) are arbitrary all-pass functions, pim(s) and

s.. (s) are minimum-phase solutions of (2.26) and (2.27) respectively,

i.e.,

U. (s)

Pim(S) = Qi(s) (2.34)

P..(s)
s ijm(s) = Q (2.35)

m Qij (s)

and

ii (s) s Bi(s)Pim(S) (2.36)

s ij(s) = i(s)Bj(s) ]  m(S) (2.37)

It is clear that S. (s) and S. (s) so constructed have the desired
11 1J

magnitudes on the jw-axis and satisfy (2.26); i.e., Isi(jw)1 2

I - Gij (w 2). As for the other conditions in (2.27) generated by the

off-diagonal equations of SS*=U, the constraints on 0 .(s) and 6. .(s)

must be identified.

We claim that the relation between 8ii (s) and 0ij (s) is

* 2
6..i (s)O (S) = 6. (s) i,j = 1, 2, ... , n and iij (2.38)

written as

6..(s) = i(s) (s) (2.39)

= 2
a . O..(s) (S) (2.40)ii

Substituting (2.39) and (2.40) into (2.27)

*n n

S S C S C 0 (2.41)k ikkj, i k ik j, kSkj,

k=1 k=1

27
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we obtain

n

*E SikSk. = 0 i = 1, 2, .... n-I (2.42)

k=1 j = i+l, .... n

Note that kk= 1 .  ij can cancel out because they are independent

of the index k. For fixed i and j, as k varies, equation (2.27)

remains valid. Since it is valid for any i and j, we conclude that

multiplication of regular all-pass functions constrinted by (2.38)

a. does not affect the para-unitary property. These all-pass functions

only affect the phases of the scattering parameters.

2.5 Example

It is desired to equalize two series RL loads to a generator with

a parallel RC internal impedance and to achieve the second order

Butterworth transducer power gain. The specifications are shown in

Fig. 2.2 with R = 1 C =1 F,R R 2 0, and L,, L 3 I H.

1.RL 
R2

p,., c T I L2

L3

Fig. 2.2. An Illustrative Exaimple of a Thre-Port NetworK.

28
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* Given

Z (s) =(2.43)1 s+1

z2 (s) = z3 (s) = s+2 (2.44)

and

2 2 2

G1 2 (u 2 ) = G1 3 (W2 ) - (2.45)

We wish to construct a scattering matrix S(s) terminated in z1 , z2,

and z3 , achieving the given G 12 and G13 .

Solution: Write

-12 (-s2 G13(-s 2 k (2.46)
I+s 4

Factorizing G12 and G1 3 , we obtain the minimum-phase solutions of

(2.46) as

Sl2m - S13m = 2 k (2.47)
13m s + v2s + I

We write G2 3 (-S ) in a general form

k23 (s 2+c)

G23(-s2 = a 22 (2.48)

(s +1)(s +a's2+b')

where c=-4, a' and b' are to be determined. Factorizing G23(-S2

we get

S.,

5 m =k 23 (s +2)
23m (s2 + s + I)(s 2  

(2.49)

Observe that zI(s) has a Class IT zero of transmission of order

29
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one at s0=- and z2 (s) and z3 (s) each has a Class IV zero of trans-

mission of order one at so =W. Next, we find reflection coefficient

P 1 (s).

The minimum phase solution of (2.26) with i=1 is

St _(= E +[I- )(1-t) I + ... 1 (2.50)

1 i s- + v5_s + 1

where t - (I-2k2 4 . Introducing the all-pass function

a. (S) = 1 (2.51)
1' s+(. s

* The reflection coefficient p 1 is

P (S) = 6ll(S)Sllm(S) = I11{1 - [2Ea. + r2-(1-t)] - + ... } (2.52)1 1 lm1 i i s

Obviously, p1 (s) satisfies the constraint Axi = px (x=0) of Theorem 2.2

-. with = +1. The requirement from condition (4.iii.c)

A11 - p 1

q_ A11 F I I > 0 (2.53)
21

becomes

l-t 1- 0
E I -0 (2.54)

To maximize k, set 'a. =0, i.e., and t=O, then

k - (2.55)

2

p1  - (2.56)
s + 2+ I
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s

S(S ) = B - S2 + + 1 (2.57)

To compute S23m (s) we apply the following formula [1]

.4 ±(df 12 ,f 1 3 ,f 2 3 ,+df 1 2 f1 3 f 2 3) 1 2 f 1 2 f 1 3 f 13* + f12 f 1 2 ,f 2 3 f 2 3 ,

+ f 13f 13* f23 f23* (2.58)

S. f. .
where S.. = and d is the common denominator of all S. (i,j =1,2,3)

ij d

s + 2

S2 3m = 2 3  (2.59)
23m 23 (s 2 + /2s + 1)[2(4 - v'2) s2 + 2(2/2 - )s + 4)

The minimum phase solution of

"2 2(4 - vQ)s 4 + s(2V' - l)s 3 + 4s2 + s + 2 (2.60)

2s + 1s + 1)[2(4 - V'2)s + (2 /22 - 1)s + 4]

By applying condition (3) cf Theorem 2.2 at s==

A0 2  p P0 2  (2.61)

2we obtain e. = +1 and p02 = 1. Furthermore t 12 23 -1.

*Thus, the scattering matrix can be formed according to (2.32)

-id (2.33), where 0.. and 6.. (i,j = 1,2,3) satisfy the relation

Pt.,.. = .

From co ndition (4. iii. ), we must have I"

"" 12 - )12 1
p%"q_ 1 22- V  - < ..... (2.62)

.,2 F02 -12

" L~e t
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s-s.

=22 1"I (2.63)
1 1

-Then (2.62) becomes

2 . + 72

4 < 1 (2.64)4 -

To satisfy (2.64), set E.i =0, i.e., 6 =1. Similarly 633=1.
-a.2*132

1
Therefore, the regular all-pass functions of the off-diagonal elements

Sij (iij) are also determined. 6ij = 1 (i,j =1,2,3 iij).

Based on the above analyses, we construct the required para-

unitary scattering matrix as

-s-"".l22 v2
2 2

4 ,_ 3 2
,I) 1 _ _ 2(4-v2)s +2(2y2-L)s +4s +s+2 s+2 (2.65

*S 2+vIs+l 2(4-2)s 2 +2(2M/-I)s+4 2(4-,")s 2 +2(2'-i)s+4

'2 _ _s+2 2 (4-,2) s4+2 (22-i ) s 3+4s 2+s+2

2 2(4-,) s2+2(2/2-i)s+4 2(4- 72)s2 +2(2'2-I)s+4

The corresponding augmentation matrix Y (s) is

•Y (s) - ___

4(s + v2S + 1)
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2(2-/v2)s 3 +2s 2 +2 2s+ -(s+i) -(s+l)

(42-1 )s 3+(8-2V2) s 2 +(4v'- -)s+l s+2
(4-V2 +(2 2- I) s+2 2 [ (4-V)rs 2 +(2/2- )s+2]

-(s+1) s+2 (4/2-1 ) s 3+(8-2r2) s 2+ (42 - i) s+
2 -(fl (4-42F) s 2+(2M2-i) s+2 4 (- r2) .s2 +(2 Y2-1) S+2

'd.
9  Clearly, Ya(S) is analytic in the RHS and all the off-diagonal

elements Yi (s) have no poles on the jw-axis. Condition (2) of
1J

Theorem 2.2 is satisfied. Thecalculation also shows that conditions

(4.iii.a) and (4.iii.b) are fulfilled.

q q-i11 = q -1,13 0

Q ,'=Qo,z' = 0 Z9,' = 2,3

Finally, condition (4.iii.c) can be written, in this particular

case, as

. q ,-0,1 q0 1 3

*--- ---- --- ---- 6-------------------------------------------

,a1,22 -q 1 ,2 3  > 0 (2.67a)

12

I
0,13 q, 2 3 -q q1,33

I a 1 3

or

i-

'
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2 0 02

------------------

0 _!Li 0 > 0 (2.67b)
o 4

0 I 0 1 4-
t4

.

This matrix is nonnegative definite and condition (4.iii.c) is

satisfied. Thus, the scattering matrix constructed in (2.65) is indeed

-v realizable which achieves the preassigned transducer power gain when

the 3-port network is terminated in z(s).

2.6 Proof of Theorem 2.2

We prove Theorem 2.2 via Wohlers existence theorem and consider

the following fout cases:

Case I: zi(s) (i=1,2,...,n) have only Class I zero of. 1

transmission s

Case II: .zi(jwo)l <- i=1,2 .. n

Case III: Izi(Jw0 )i = - i=1,2,...,n

Case IV: Iz (jw0)1 = k=1,2,...,k and IZp (J0)1 <''=

p=k+l, k+2, ... , n

Since the theorem is valid for both reciprocal and nonreciprocal

networks, we should keep the subscripts of all entries of the matrix

distinguished. For example Y12 and Y21 are different in general.

Note that for those impedances which have zeros in the close RHS,

they fall into case II where Izi(jw 0 ) < =. In this case all residues

are zero.

In case 1, at a class I zero of transmission s0 , constraint (2)
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is the necessary and sufficient condition for Y to be analytic in
-a

the open RHS and for the off-diagonal elements Y.. (i,j =1,2,... ,n

i~j) to have at most simple poles at the jo,)-axis normalization zeros.

Constraint (3) ens,,rp that Y.. (i = 1,2,.. . n) have at most simple

poles at the jw-axis normalization zeros. So the necessary and suf-

ficient conditions for the matrix S(s) to be a scittering *natrix

reduce to the first three statements of the theorem since

"(s) = {U(s) - [Z(s) - U(s)]Ya(s)}[z(s) + U(s)] (2.68)

p is analytic on the jw-axis in this case.

Necessity. Suppose that S(s) is the scattering matrix of a lossless,

n-port network normalizing to n passive impedances having the pre-

assigned transducer power-gain characteristics. For a lossless network,

S(s) is para-unitary. This shows that condition (1) is necessary.

We next compute the augmentation admittance matrix Y (s) from S(s) and

the loads. Since Y (s) is positive real, there are at most simple

poles on the jw-axis. Condition (2) indicates that Yi (s) (i~j) have

at most simple poles on the jo-axis while condition (3) guarantees that

Y.. (s) have at most simple poles on the jo-axis. These are part of

Youla's constraints [58].

Next, we will show that condition (4) is necessary. From (2.68)

we expand

[lYl (Z_) [(ZY+) - 12 (zl- )(z 2 +t) ... -YIn (z -) (zn+l)

y (z -1) (Z+) (z +I) ... -Y (z -1)(z +1)
21. 2 1 2 2 2 .-.. -2n 2 nM(s) = (2.69)

-Y I (Z -1)(Z +1) -Y (z -l)(z +I) ... [- nn (Z -1)](zn+l)
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In case 11, Iz(JO)I < for all i. We need only show that Y (s)
i 0

has at most simple poles with a nonnegative residue matrix. This

requires that M(s) have at most simple poles with a nonnegative residue
% matrix. Likewise, if M(s) has simple poles with a nonnegative residue

matrix then Y w(s) also has simple poles with a nonnegative residue

matrix.

Since z(s) are analytic on the jw-axis, the poles of Y (s) on the

j--axis are contributed by zeros of the real part of z(s). It is

obvious from (2.69) that the poles of M(s) on the jo-axis are contributed

by those of Y (s). Let the residue matrix of M(s) be RM(s). We cana

write

.RM (J - o )  d iag (l- z ) Q (u ) - d iag (1+ z ) i 1 ,2,.. . n (2 .70 )

det RM(jo) = det Q (u) - [1-z (jo) (2.71)1 0

where the residue matrix of Y (s) is denoted byq j(u) and u refers to

,a. either class ii or Il1. On the jw-axis, z(jo ) are pure imaginary and
1 0

2-z (j ) 0 should be greater than zero. Therefore, because of non-

negative definite properties of RM(jwo), Q_ 1 (u) is also nonnegative

definite at jw .0

In case IIi, jziJ(o 0 )I = 1,2,..., n. The open-circuit impedance

* matrix Z (s) of n-port N can be expressed by the relation

ZN -Y a z (2.72)

I t K (j o ) and K ( 
(2.. 73

Let(j , ) be the residue of Z (S )  ;Md Y (s) at w . Then
W. -a 0 _Na

',-,,KN 
JC0) , K"(V 0) - A_ I (2.73)

In order to have a positive real matrix ZN Y (s) must have simple
' p J~ t "* w i ti re s id ue n o t le s s h a n th o s e o f z (s ) T h e re fo re , w e
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must have Y (J ) = 0, i.e.,

'- 1 (v) = Q0 (IV) =0

Upon decomposition, we obtain

det _ det Al det - Q (IV)] det A (2.74)

The hermitian property together with the nonnegative definiteness of

R,,(jw O ) implies condition (4.ii.b).

In case IV, we relabel all the impedances, if necessary, so that

• Qz (J o)1 = - 1 Q=1,2,...,k and [zp(Jw o )l < - p=k+l, k+2, ... , n.

The matrix M(s) has a simple pole at Jw0 whose residue matrix is
',.

* k n-k k n-k k n-k

r-~j L -D L

-Q A -Q -

•p I A_ - 1 0

det RM(jJwO) = (det A I [det z2 t(J 0)+1 "at -(k---n L---- (2.76)

By decomposition, the nonnegative definiteness of RM(JwO) assures

condition (4.iii.c).

For Y- to have a simple pole with a nonnegative residue matrix of-a

J., 0 it is necu ssairy that - a (')o)lI < = ~.

2- I,9p =  o

Based on the same reison as in case III, condition (4.iii.b) requires

- 9, , = f ) ([V) = 0 ,R ' = 1,2,... ,k
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Sufficiency. Assume that conditions of Theorem 2.2 are satisfied.

We show that conditions (1), (2) and (3b) of Theorem 2.1 are also

satisfied. Therefore, matrix S(s) is the scattering matrix of a

lumped, passive n-port normalized to the given n non-Foster,

pusitive-real impedances.

In case II, Izi(jwo)I < - for all i. As discussed above, we

have shown that if Y (s) has simple poles with a nonnegative definite

residue matrix, M(s) also has simple poles with a nonnegative definite

residue matrix. We need only focus on Y (s), rather than M(s), showing

4that requirements for M(s) can be similarly imposed on Y (s), i.e., if
-4a

4 Y (s) is satisfied by a given condition, M(s) would also be satisfied.

From condition (2), Y ij(s) (i,j=1,2,...,n ijj) have simple

poles on the jw-axis. From condition (3), Y. (s) have simple poles

on the jw-axis. Also, from (2.70) the nonnegative definiteness of

RM(jWoO) guarantees that QI(u) possess this property.

In case III, zi(jw) = i=1,2,...n. Constraints (3) and

(4.ii.a) require that Y(J 0 ) =-nO 0 From (2.69), M(s) has simple

-

0 

n

poles at Jw0 and the residue matrix becomes

RM(J 0 ) =AQ" [Aw - Q (IV)] .A_ (2.77)

where
I

Qi(IV) = [ql,ij(IV)]

and

A - p
m.I P m.i

ql ql (IV) - i = 1, 2, ... , n,'(M ,iFmi- i )i

.

Since z(s) is a positive real matrix, its residues a_ i (i =1,2,...,n)

are all real and positive. Therefore, condition (4. ii.b) assures that

matrix R (s) is nonnegative definite.
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In case IV, constraints (4.iii.a) and (4.iii.b) guarantee that

M(s) has simple poles on the jw-axis. By appealing to (2.76), the

nonnegative definite properties of RM(Jwo) are the result of constraint

(4.iii.c).

2.7 Conclusion

Necessary and sufficient conditions were presented for a rational

n x i matrix S(s) to be the scattering matrix of a lossless n-port

equalizer terminated in a set of positive-real impedances. The theorem

is essentially valid for either a reciprocal or nonnreciprocal matrix.

When the transducer power-gain characteristics are given, the method

introduced can be used to construct a generalized symmetric scattering

*matrix such that the corresponding lossless reciprocal n-port equalizer

achieves the preassigned transducer power-gain characteristics. A three-

port illustrative example was given.

It is worth noting that the design problem for a lossless reciprocal

n-port equalizer depends heavily on, first, solving for a scattering

matrix possessing a para-unitary property and then seeking a set of

regular all-pass factors to satisfy the realizability conditions.

By applying the multiport synthesis, the desired equalizer can be

realized.

The main advantage of the proposed procedure lies in its simplicity

in testing, since all the conditions are expressed in matrix form and in

terms of the Laurent series coefficients.
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% 'Section 3

ON LOSSLESS RECIPROCAL AND NONRECIPROCAL

MATCHING NETWORKS OF AN ACTIVE LOAD

3.1 Introduction

Section 3 presents a general matching theory between an arbitrary

passive impedance and an active load impedance and extends the broad-

band matching theory to include both lossless reciprocal and non-

reciprocal network. Application of the result to the design of non-

reciprocal negative-resistance amplifier is given. The significance

of the present approach is that the realization of the equalizer is

accomplished by means of the driving-point synthesis based on the

Darlington theory. The result enlarges the domain of realizable

broadband matching networks.

.4 An illustrative example is presented to show the design procedure

and the conditions under which a lossless nonreciprocal networks is

realized for an active load.

In studying the problem of broadband matching, Youla [58]

developed a theory based on the principle of complex normalization.

Chan and Kuh [6] generalized this theory to include both passive and

active one-port load impedance. Ho and Balabanian [33] developed a

technique for the synthesis of active and passive compatible impedances

when the coupling networks is not necessarily reciprocal. In 1982,

Chen and Satyanarayana [19] presented a method for realizing a lossless

reciprocal equalizer which involves only the driving-point synthesis

based on the Darlington theory. Chen and Tsai [201 then extended the

above result to include the situation where the load impedance is

active; however, only the reciprocal coupling networks were considered.
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N

The present research is a direct extension and generalization

of the previous works. Necessary and sufficient conditions are given

for the existence of a lossless equalizer which, when operating

between the given passive source impedance and the active load impe-

dance, yields a preassigned transducer power-gain characteristic.

The major point of departure arises from the realizability of the

equalizer which may be a reciprocal or nonreciprocal network. Under

certain conditions, the coupling network can only be realized as a

nonreciprocal network. The use of nonreciprocal coupling networks

will not only enlarge the domain of realizable networks, but may also

lead to the simplification of their realizations. A design procedure

* is described and an example is given to illustrate the approach.

3.2 Preliminary considerations

Consider th? lossless two-port network N of Fig. 3.1. The source

impedance zI(s) is assumed to be passive and the load impedance z2 (s)

may be either passive or active. The driving-point impedances looking

into the input and output ports when the output and input ports are

ZIls) lassies$

equalizer

%r1. z2 (s)

ZV9 (

"Z) I $1 Z22(5)

i ,(s) P2(s)

Fig. 3.t. Schematic of a Lossless Two-Port Network N with a
Passive Source Impedance zI (s) and an Active Load
z 2(s)"
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terminated in z2(s) and zI(s) are denoted by Z1 1 (s) and Z22(s),

respectively. The symbol pI(s) is used to represent the reflection

coefficient at the input port normalizing to z1 (s), and p2 (s) is the

reflection coefficient at the output port with respect to z2 (s).

The even part of zi(s) (i=1,2) is written as

ri(s) = Ev zi(s) = [zi(s) + zi(-s)] = hi(s)hi(-s) (3.1)

-1.

where the factorization is to be performed so that h.(s) and h I (-s)
i.

are analytic in the open RHS. Let

H(s) = diag [hI (s), h2 (s)] (3.2)
% ~

The augmentation admittance matrix Y (s) is defined as

Y (s) = [Y. (s)] = [Z(s) +z(s)] i,j =1,2 (3.3)

where Z(s) is the open-circuit impedance matrix of the two-port

network N and z(s) is the reference impedance matrix

z(s) = diag [zl(s), z2 (s)] (3.4)

Similarly, define

S22(s) = Ev Z 2 2 (S) = [Z2 2 (s) + Z22 (-s)] = M22 (s)M22 (-s) (3.5)

v..

where M 2 2 (s) and M 22 (s) are analytic in the open RHS.

Denote by A.(s) (i=1,2) the real regular all-pass function defined

by the open RHS poles of zi(-s) and by Bi(s) (i=1,2) the real regular

all-pass function defined by the open RHS zeros of r.(s). Thus,

h.(s)
1 = A (s) Bi(s) i=1,2 (3.6)

h (-s) 1 1
,4.

RHS and I.HS denote the right half and the left half of the s-plane,
respectivelv.
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Define

S F. (s) = 2 r (s)Ai (s) (3.7)

For a given impedance zi(s), a closed RHS zero s0 i of multiplicity

k. of the function r.(s)/z.(s) is known as a zero of transmission of
1 1 1

order k.. The zeros of transmission sOl = a0 i + jWoi are divided into

the following four mutual exclusive classes:

Class I: zero if Re s O > 0

Class II: zero if soi = J oi and zi(jwo = 0

Class III: zero if sOi = jwoi and 0 < Izi (JwOi) I <

Class IV: zero if sOi = jo i and =zi(Jwoi)
=

In this study, use will be made of the results derived by Youla [58]

and Chan and Kuh [61 which are referred to as Theorem A-i and Theorem A-2

(see Section 3.5). They are used to solve the matching problem between

a resistive source and a passive and/or active load. By imposing various

necessary constraints on the reflection coefficient p2 (s), a set of

sufficient conditions is obtained to guarantee that the back-end input

impedance Z2 2 (s) is a positive-real function. Thus it is realizable by

a lossless two-port network terminating in a resistor.

The solution to a two-port matching problem with an active load

can be described as follows: When a passive source impedance z1 (s),

an active load impedance z2 (s), and a preassigned transducer power-gain

characteristic G(W 2 ) are given, the problem of impedance compatibility

arises. G(w 2 ) is expressed in terms of the reflection coefficient

P2 (jw) by

G(2 =I - 12 (3.8)

By applying Chan and Kuh's coefficient constraints, a realizable output
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reflection coefficient p2 (s) can be ascertained, from which the driving-

point impedance Z2 2 (s) looking into the output port is determined as

Z22 (s) =z 2 (s) + z 2 (-s)iiZ 2 2(s) = 1 - P 2 (s) - z 2 (s) (3.9)

which is guaranteed to be positive real, while Z22 (s) + z2 (s) # 0 for

Res >0.

Two impedances Z22 and z are said to be compatible if Z22 (s)

can be realized as the input impedance of a lossless two-port network

terminated in z1 (s) as shown in Fig. 3.1. Set

S1 - Z (-s) M2 2 (s)€I(s) = Z2222 -BW W(.0
- - s) I + Z2 2 (s) • M2 2 (-s) Bl(S)e(s) (3.10)

(s) can be identified as the normalized reflection coefficient at

A. the input port when the active load is replaced by a 1-ohm resistor.

Denote by Z10 (s) the driving-point impedance at the input port with

1-ohm termination at the output port. If and only if a real regular

all-pass function 6(s) exists such that 4l(s) is bounded real and

satisfies Youla's coefficient constraints, Z2 2 (s) is compatible with

z Il(s). As shown by Youla [58), the impedance Z10 (s) as computed from

Z10 (s) = A _l(S) - zI(s) (3.11)

is positive real and is therefore realizable as the input impedance

of a lossless two-port terminating in a 1-ohm resistor. The removal

of the I-ohm resistor yields the desired two-port network. Note

that in certain situations, Z10 (s) must be augmented [33] to ensure

that the back-end impedance facing the 1-ohm resistor is Z22 (s) as

obtained in (3.9).
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3.3 Main result

In this section, we consider the design of the nonreciprocal

amplifier configuration of Fig. 3.2, where an ideal three-port

circulator is used for isolation and the matching two-port network N

may be either reciprocal or nonreciprocal but lossless.

R

"D c rlossless
N0  ci equalizer z (s)

NN2

Fig. 3.2. Schematic of a Nonreciprocal Amplifier Configuration.

Theorem 3.1: Let zI(s) be a rational, non-Foster, positive-real

function, and z2 (s) be a rational, non-Foster, real function. Let

P2 (s) and i1 (s) be real rational functions of s. Then the functions

defined by the relations

Z 2 s ( s ) s) + z2(-s) 2 (s) (3.12)
P 2 (s)

. F1 (s)
Z 10 (s) = ()- Z1 (s) (3. 13)

are positive-real, Z22(s) + z2 (s) # 0 for Re s - 0 except degenerate

cases, and Z 0 (s) can be realized as a lossless reciprocal or non-

reciprocal two-port network terminating in a 1-ohmn resistor, the
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output impedance Z 22(s) of which with input terminating in z1 (s) can

be made equal to Z 22(s) if and only if the following conditions are

satisfied:

(i) P,(s) satisfies the conditions of Theorem A-2.

(ii) There exists a real regular all-pass function 8(s) such that

-"I - Z (-s) M 22(s)
t. '. lS )  = 22 2

.I + Z2 2 (s) M2 2 (-s) Bl(S)(s) (3.14)

is bounded real satisfying the coefficient constraints of Theorem A-I

where M2 2 (s)M2 2 (-s) = [Z2 2 (s) + Z22 (-s)] with M22 (s) and M2 2 (S)

being analytic in the open RHS and Al(s), B1 (s) and Fl(s) are specified

- by zl(s) as in (3.6) and (3.7) with hi(s) and r (s) as defined in (3.1).

Proof. Necessity. Considered first is the general situation where

network N may be reciprocal or nonreciprocal. Since condition (i)

follows directly from Theorem A-2, we show that if the network N of

Fig. 3.1 is the desired two-port lossless network, condition (ii) is

% true. Let

ZSs) = [S. .(s)] i,j = 1,2 (3. 15)

be the scattering matrix of N normalizing to the reference impedance

matrix

z(s) = diag [z1 (s), 1] (3.16)

The effect due to the nonreciprocity can be regarded as a phase shift

represented by the multiplication by a real. regular all-pass function.

This gives

S 2 1 (s) = S12(S)O21(s) (3.17)

where (s) is a real regular all-pass function. Based on the para-
. 21
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unitary property, we obtain the most general scattering matrix rep-

resentation as

I - Z2 2 (-s) M2 2(s) 2 2M 2 2 (s)
7(c '1~ (s) b12 (S)I + Z22(s) M22(-s) 012 )0 2 1  Z 22 + 1 -2

"... S(s) (3. 18)

- 2M 2 2 (s) Z22(s) -

. Z2 2 (s) + 1 12 21' Z22(S) + 1

where 0 12(s) is another real regular all-pass function.

-.'I. The admittance matrix Y (s) of the augmented two-port network N
-a a

of Fig. 3.3 can be obtained by

Y (s) H (s)[H(s)H- (-s) - S(s)] H-(s) = [Yija (3.19)

giving

Y M2 2 (s) 012(s)
12 (s) (3.20)"." a h 1 (s) Z2 2 (s) + 1

For Y 12a(s) to analytic the open RHS, 012(s) must contain all

the open RHS zeros of h1 (s) to at least the same order. Note that

in the open RHS, zeros of hl(s), rI(s), and B1 (s) coincide. Thus,

, ' o s s l e s s
L -. equalizer

• Fig. 3.3. The Augmented Two-Port Network N.'.'
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it is necessary that
%ar

6 1 2 (s) = B(S) 0 (S) (3.21)

where 60(s) is a real regular all-pass function.

The complex normalized reflection coefficient S1l(s) is expressed

as

S11 (s) = Bl(S) 1 (s) (3.22)

o'.f where

6s) I - Z2 2 (-s) M2 2 (s) 2 (3.23)
1 1 + Z22 (s) M2 2 (-s) B1 (S) 0  2 1

is a bounded-real function satisfying Youla's coefficient constraints.

Comparing (3.23) with (3.14), we can choose

O(s) = 2s)2(S )  (3.24)

-0(-)621(5)

If N is reciprocal, S(s) is symmetric,

S 1 2 (s) = S2 1 (s) (3.25)

or

6 21(S) - 1 (3.26)

Therefore, O(s) is the perfect square of a real regular all-pass

function, namely,S

6(s) S) (3.27)

Sufficiency. Assume that conditions (i) and (ii) are satisfied.

We show that a desired two-port network N exists. By Theorem A-I

and Theorem A-2, Z 0 (S) and Z22 (s) as specified in (3.13) and (3.12),

respectively, are positive-real functions. From these impedances,

a two-port network is constructed as shown in Fig. 3.4. Our task is

, 48
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S.-
z~ls) -- ossles$

,.,.,equalizer

Fig. 3.4. Lossless Two-Port Network N Terminated in a

Passive Source Impedance z I(s) and a 1-ohm
Load.

-"

to show that the output impedance Z" (s) of this two-port network

-;

facing the 1-ohm resistor can be made equal to Z (s) by augmenting

Z (s). For the constructed network, the scattering matrix is

expressed as in

h "

h (s Z10 (s) -z (-s) (.8
S 11(s h1( -s)J Z 10 (s) + Z I(s) (.8

Based on the para-unitary property, 2(s )  is obtained as

.',

..

.. S.h (s) lo(s) I (s)- s) ( .9

21 10 2Mlo(s)ml (s)A S2(s = Zlo(s) + Zl(S) e2(s (3.29)

where

rl(s) = Ev zl(s) = mll(s)mll(-s) (3.30)

with m1 (s) and mlI(s) being analytic in the open RHS and e is a
21

real regular all-pass function. Under this factorization, all the

LHtS poles and zeros of r1 (s) are contained in m11 (s). In a similar

-.. , way,
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0(S) = Ev Z10 (S) = M1 0(S)M 10 (-s) (3.31)

where M0(s) and Mo(s) are analytic in the open RHS.

S1 2 (s) can be expressed as

S1 2 (S) = S2 1 (s)e12 (s) (3.32)

where 612 (s) is a real regular all-pass function. Then

(S) M0 (S) hl(-S) m 1(s) Z 0(-s)- Z(s)(S) 2

22 M 10 (-s) hi(s) mll(-s) Z10 (s) + zl(s) 0l2(S)1 2 1(s) (3.33)

' 1 From (3.11), we obtain

r RI0(S) = r 1s[ (3.34)
[A (S) - l(s)][Al(-S) (-s)(

Combining (3.31) and (3.34), M 10 (s) can be factored as

hi(s)

M0(s) = A 1(s) (S) (3.35)

where ¢12m(s) is the minimum-phase factorization of I -(-s),

because all its poles and zeros are in the open LHS. From (3.14),

it is found to be

2M2 (s)
d 2(s) - 2+ 22 (s) (3.36)

12m 1 + Z22(S)

S. 2

Again, using formula (3.19) yields the (2,1)-element of Y (s) as
50

. M0 (sm] i(s)
2aS - h1 (S)[Z1 o(s) + Zl(S)] 612 (s)62 1 (s) (3.37)

V
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Notice that M 10 10 (as) + z1 (s) have no poles and zeros in the

open RHS and

rol(S) _ I__

hI(s) - B(s) (3.38)
Pt

Set

e12(s) 2 1 (s) = B1 (s) (3.39)

Combining (3.6), (3.7), (3.14), (3.35), (3.36) and (3.33) yields

Z2 2 (s)- 1
S 22(s) = (s) + I 6(_S~e12(-s) (3.40)

Z2 2

*Denote a Hurwitz Polynomial P(s) by

P(s) = rI (s + (3.41)
ii

where a is an arbitrary complex number and Re 8Oi > 0. According

to Ho and Balabanian [33], if Zl1 (s) is augmented by multiplying both

the numerator and denominator by a predetermined auxiliary polynomial

P(s), the resulting normalized reflection coefficient S"2 (s) at the

output port will be the product of $22(s) and a(s) where

a(s) = P(-s) (3.42)P(s)

- is a regular all-pass function.

In this case, a(s) can be chosen as

a(s) = 6(s)e 12 (s) (3.43)

Thus, *a new realization can be obtained by augmenting Z 10 (s), and

(3.40) becomes
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Z (s) -

So (s) Z2 2 (s) + 1 (3.44)
,-,

which is the output reflection coefficient when the two-port network

is terminated in a 1-ohm resistor.

'. In general, we can write

,e 0(s) - g(-s) (3.45)

g(s)

where

m,

g(s) = [ (s + i 1 (3.46)

* -' and ri is an arbitrary complex number, Re Ci > 0, and m. is a positive
1 1

integer. If there exists an all-pass function 6(s) with all m. being. 2.

even, then either a reciprocal or nonreciprocal two-port network can

be realized. If the all-pass function e(s) can only be found with at

least one odd m. the realization is nonreciprocal.

Corollary 3.1: In Theorem 3.1, if e(s) can be found to be a real

regular all-pass function, each of its factors being of even order,

the lossless two-port network can be realized by either a reciprocal

or nonreciprocal network; and if not, the realization can only be

nonreciprocal.

3.4 Illustrative example

It is desired to design an optimum nonreciprocal negative-

% resistance amplifier of Fig. 3.2 with the tunnel diode as the load

impedance, and to achieve the third-order, low-pass Chebyshev

%. transducer power-gain characteristic having a 3-dB passband ripple

c = 0.99763 with cutoff frequency w > 0.15 rad/s, where R1 = 20 Q,

'p,
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L = 0.8 H, r = 0.5 Q, Lt = 0.024 H, R = I Q, and C = I F are shown

in Fig. 3.5.

Lt rI RI
N R C

.Vol

Fig. 3.5. A Lossless Two-Port Network to be resigned.

For the source impedance, we have

z1 (s) = 20 + 0.8s (3.47)

r1 (s) = 20 (3.48)

r r (s) 20 (3.49)

Z (s) 20 + 0.8s

A1 (s) = B1 (s) = 1 (3.50)

FI(s) = 2r (s)AI(s) = 40 (3.51)

For the load impedance, we have

1

z2 (s) = 0.5 + 0.024s + s (3.52)

r2 (s) 1 + (3.53)

s -1

Denote the zeros of z2 (s) + z2 (-s) by

s = jw j  (3.54)r r

giving

1 (3.55)
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The third-order Chebyshev polynomial is

f(s) = 4s3 
- 3s (3.56)

According to Chan and Kuh [6], we can choose the reflection

coefficient p2 (s) having the form

! I2 (jw), 2 = 1 +2 -1

e [4 ) - 3 
i

I+

()2

16 2 w 6 242 + 2 Kw 2
c, ,"_ l L (3.58)"."e, -" 2_4) (mj7) +[9s -( c)2 ( cc) 2 (.8

16c 2 ) 24 C2 + [cE\2 _ _\2 +

Write

= PQ(s)p 1(s)px(s) (3.59)

where p0 (s) is the minimum-phase solution of (3.58) and pf(s) and p,(s)

are real regular all-pass functions. Set

a (s )3 + a 2  + a1  + a0a 3  w + ar 0

p 0(s) = (3.60)I0 b 3  + b 2  +b,() +b,,

Thus,

;'. 2 2 2 , + a(2 ( 2

a.( -a ) + a2 - 2a 3  - 2a0 a1) + a

10-( j, 1 ( 3 6 1 )

b3 ( ) + (b 2 2bib3)()4 + (b 21  2b) (r)2+ b5

CC
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Equating (3.58) and (3.61) yields a = 1 and

a 2 - 2ala =-1.5 (3.62a)
2 1a3  -.

K202

2 2KWC
a2 - 2a a = 0.5625 c (3.62b)e.,'.t16E2 W

r
, a2 K 2

a0  K 2  (3.62c)! 16c2

b3 = 1 (3.63a)

b- 2b b3  -1.5 (3.63b)

2
Sb2 cb - 2b b 0.5625 162 2 (3.63c)
1 0 2 16c 2W2

r

2 1
2 (3.63d)

Since z2 (s) has a pole of order one at s p I where is

regular, and a pole at the infinity, the following two conditions

must be satisfied [6]:
.'

P2 (1) = 0 (3.64)

and

S( sL + (3.65)
S-* t

In (3.59), Pf(s) is specified by sp = 1

-- s + 1 (3.66)

and p can be written as
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2 s-A.
P (S) s + X. (3.67)
A i=1 s+A

where Ai. = o. (i=1,2) are positive real numbers. Applying (3.62) and

(3.63) yields

a 3 = b3 = 1 (3.68)

a2  (2 + 2 Z Xi 2. + b (3.69)
Sw C iL2

In addition, the theoretical limitation on bandwidth derived in

[6] gives the formula

( Sn- w tan + 1 -tan-
tanhrrW i 2 2 2

,'r' .r .1
r)_ r (3.70)

c 1 r -+ E A
W r 

L t i

'or

'2w. a.

c w tan -- + E tan1 2+ - r W 2 2 , 2
1_i 1 - Ai

,n r r (3.71)
".i "2 -- 7E - - + .

"."'r r t I

which determines the range of wcc

In order to solve for a, b (j=0,I,2,3), W, and A (i=1,2),

estimation for EX. is made and iterative calculation is applied to

(3.59), (3.62), (3.63), (3.64), (3.68) and (3.69). The results are

a0 = 32.080112 b = 0.250594

a1 = 18.773009 b = 0.926340
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a2 = 6.003834 b2 = 0.593867 (3.72)

- a3 = 1 b 3  1

X1 = 5.05490 A2 = 15.26533 wc = 0.18 (3.73)

-p

Thus,

(S )  171.467764s 3 + 185.303508s 2 + 104.294496s + 32.080112

2 171.467764s3 + 18.329228s 2 + 5.146328s + 0.250594

s -1 s - 5.05490 s - 15.26533

s + 1 s + 5.05490 s + 15.26533 (3.74)

i (S) 7144.490118s
3 + 4242.349924s2 + 5342.034112s + 2494.761901

2. 171.467764s 5 + 3502.593694s3 + 13608.86314s 3 + 1519.199733s 2

"a; 2+
S + 1 (3.75)

+ 402.207455s + 19.337015 s + 1

From (3.12), Z2 2 (s) is obtained as

(7889.050698s 2 + 4684.392941s + 1228.07667.. ~Z2 2 (s) = (.6

22 7144.490118s 3 + 4242.349924s 2 + 5342.034122s + 2494.760901

a"

Factoring R2 2 (s) as indicated in (3.5) yields

0

M2 2 (s) _ -7144.490118s 3 + 4242.349924s2 - 5342.034122s + 2494.761901

M2 2 (-s) 7144.490118s 3 + 4242.349924s2 + 5342.034122s + 2494.761901

62 7889.050698s2 + 4684.392941s + 1228.07667
2 (3.77)

'
7889.050698s - 4684.392941s + 1228.07667

As indicated in (3.5), M22 (s) is identified so that M (s) and
22 22
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M2 2 (-s) are analytic in the RHS. That this is always possible follows

from R 22(s). The problem essentially reduces to the existence of an

all-pass function 6(s) having a certain property. Since M 22 (-s) con-

tains all the RHS poles of Z2 2 (-s) to the same order, 9(s) must be of

the form

9 =6 2 _
7889.050698s 2 

- 4684.392941s + 1228.07667 07889.050698s2 + 4684.392941s + 1228.07667 0s

Furthermore, since the impedance zI(s) has a class IV zero of trans-

mission of order 1 at s =-, the coefficient constraints [58] are

A01 =0 (3.79)

and

F 0 1
A a (3.80)
A 1 1.A - -

where

" ij (s) = Yx' (3.81)

denotes either A.(s), #j(s), or F.(s), and Y . (j =1, 2 ) are the

coefficients of the Laurent series expansions of Y.(s) at s=-, and

a_ =L = 0.8.

Obviously, we must have

e = - (3.82)

Substituting (3.50), (3.76), and (3.77) into (3.14) yields

l(S) 7144.490118s 3 + 3646.700774s 2 + 657.641181s - 1226.685231 (3.83)
Ys) 7144.490118s3 + 12131.40062s 2 + 10026.42706s + 3722.838571
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Thus, from (3.13)

Z () -278991.8448s 3+ 308066.9992s 2+ 209721.7458s + 49923.0688 (3.84)
10 8484.6998s 2+ 9368.7859s + 4949.5238

Z 10(s) is realized as a lossless two-port network terminated in a 1-ohm

resistor. When the 1-ohm resistor is replaced by the tunnel diode load,

the complete network is shown in Fig. 3.6.

V9 0 H -1-006,10.024H1 0.5nl

00

Fig. 3.6. An Example of a Complete Nonreciprocal Negative-Resistance Amplifier.

To verify the above design, the impedance Z'11 (s) is calculated as

0Z'1(s) = 1.386s 5+ 27.4838s 4+ 91.26886s 3 - 40.8118s 2+ 31.6722s -10.086 (3.85
110.04115s 4 + 0.8160s 3 + 2.7029s 2 _ 1.3458s + 0.5

We find the reflection coefficient P'(s) at the input to be

ZjI(s) - 20

1 Z'1 (s) + 2

5 4 3 21386s + 26.6608s4 + 74.9490s -94-8708s' + 58.5882s -20.086

5 __ _ 4 32 - (3.86)
1.386s + 28.3068s + 107.5882s~ + 13.2472s + 4.7562s -0.086
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Mod

giving

S(jw) (3.87)

The frequency response of the transducer power gain is plotted in

Fig. 3.7.

50-

40.

VV

20.

10

0 0 01 00 4 0'5

( VALUES

Fig. 3.7. Frequency Response of the Designed Amplifier.

* 3.5 Coefficient constraints

I. Youla's coefficient constraints

Youla's coefficient constraints p (s) are stated in terms of the

coefficients of the Laurent series expansions about the zeros of

transmission s0  = G + Ji of the following functions:

A.(s) = (s-s x (3.88)

K o60
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, Fi(s) = Fxi(S-s) X (3.89)

X x--O

Pi(s) = P xi (SSoi)x (3.90)

x=o

Basic coefficient constraints on Pi(s). For each zero of transmission

s . of order k. of z.(s), one of the following four sets of coefficient

conditions must be satisfied, depending on the classification of s .:

i) Class I: Axi = px i for x = 0, 1, 2 .... , k.-l.

(ii) Class II: A. = px for x = 0, 1, 2, .... k.-1I and

(A -p )/F .
k i k ii (k.i+l)i=

(iii) Class III: A p for x = 0, 1, 2, ... , ki-2 and

'it [A - ( /F k  0 .
-A(k i)i - P(ki-l)i k

(iv) Class IV: A p i for x = 0, 1, 2, ... , k.-1 and

(k i)i/(1k i - k i ali, the residue of

Sz. (s) at the pole j .oi"

%The importance of these constraints is summarized in the following
a.'

theorem first given by Youla [58].

Theorem A-I: Let z (s) be a prescribed, rational, non-Foster positive-

real function and p.(s) a real, rational function of the complex variable

.•. s. Then the function defined by

F (s)
S-- i " -Ai-s )  _ i(S - z.(s), i= 1,2 (3.91)

A.(S) - p(s) t

- is positive real if and only if pi(s) is a bounded-real reflection

coefficient satisfying the basic coefficient constraints.
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il. Chan and Kuh's coefficient constraints

Refer again to the network of Fig. 3.1, where z2 (s) is a given

lumped, non-Foster impedance which can be either passive or active.

The output current-basis complex reflection coefficient is defined

C" by the relation

Z2 2 (s) - z2 (-s)= S (3.92)

2. Z2 2 (s) + z2(s)

which yields

J~'

SZ(s)/z2(S) - z2 (-s)/z2 (s)

p 2 (s) 1 + Z2 2 (s)/z 2 (s)

0

- z 2 (s) + z 2 (-s) 1 + z2 (-s)/z 2 (s)1--" (S) (3.94)

-- P 2 (s) Z 2 2 (s) + z 2 (s) 1 + Z2 2(s)/z 2 (s)

z 2 (s) + z 2 (-s) z2 (-s)/z2 (s) + P 2 (s)

= 1 - P2 (S) 2 2  1 - P2 (s)

Denote by sr a zero of r2 (s) and by s a closed RHS poles of z2 (s)

and z2(-s). The Laurent series expansions around s. (s p, s r  or other

frequencies) for the following functions are given as follows:

-m .- m-m

z2(s) = a_ (s-s + a (s-s) + .... + a0 + a(s-s ) (3.96a)
2 _m i -m+1 i a0 s-s,(s-s)- hssi am~ s-) ..

-n -n+1z.(-s) = b + b . + .... + b0 + bI(s-s.i + .... (3.96b)-n (s-si)l -n+l i0 I

()-k -k+I
-Z 2 (-s)/z 2 (s) = c k (S-si + Ck+l (S-s) +

+ co + c (s-s i ) + .... (3.96c)
0 1
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-e -e+1
P2(s) = d_ e(S-s) + d_ e+(S-si) + .... + d + d (S-S.) + .... (3.96d)

Z2 2 (s) = k_1 (s-jwi) - I + k0 + (3.96e)

-' where k 1 is real and positive.

Theorem A-2: Let z2 (s) be a given rational impedance which may be

either active or passive but non-Foster. Then the impedance4
(S) = z2 (s) + z2 (-s) z (s) (3.97)

22 1 -P 2 (s) 2

is a positive-real function and Z22 (s) + z2 (s) 1 0 for Re s 
> 0 except

..

for degenerate cases, where Z22 (s) and z2 (s) have common poles and

common zeros on the real-frequency axis, if and only if p2 (s) satisfies

the following conditions:

la) In the open RHS, 1-p2 (s) is not zero except at a zero sr

of order r2 (s), or possible at poles of z2 (s). The latter

case will be included in condition 3. In the former case,

d = c0 = I (3.98a)

S-. and if z2 (s r) is regular,

5- d. = 0, i = 1,2, .. r-1 (3.98b)

If r is a pole of z2 (s) of order m,

d. = ci = 0, i = 1,2, ... , r+m- (3.98c)

and

d.i = cil i = r-in, r+m+l, ... , r+2m- (3.98d)

lb) On the real-frequency axis, the function l-p 2 (s) may have a

.r€. first-order zero at .wO , which is neither a zero of r2(s)
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nor a pole of z2(s). Then

p 2(s) = I + dI(s - jw0 ) + .... (3.99a)

where dI is real and

Re [z2 (jW 0 ) ]/(-d ) > 0 (3.99b)

At a zero jor of r2 (s) of order r, d = c = 1; and if

z 2(Jor) is regular,

di = 0, i = 1,2, ... , r-1 (3.100a)

and

Sdr I j 0 (if degenerate) (3.100b)

If jwr is a pole of z2 (s) of order m, then

d. = c. = 0, i = 1,2, ... , r+m-1 (3. 00c).,.,.1 1

and

d. = c., i ; r+m, r++l, .... r+2m-1 (3. lOOd)

and

dr = c r+2m - kicr+m /a-m (if degenerate) (3.100e)

where k is real and positive.

2) On the real-frequency axis, IP2(jw)l satisfies the

following:

p 2 (j) > 1, if Re z2(jW) < 0 (3.101a)

, I 2 (J ) l < , if Re z 2 (jW) _ 0 (3.101b)

3a) In the open RHS, p 2 (s) is analytic except at s , which is a

pole of z2 (s) of order m and is a pole of z 2 (-s) of order n,

(m,n 0). Then
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d. = 0, i < m-n-I (3.102a)

and

d. = c., i = m-n, m-n+l, ... , w (3.102b)

where

w = 2m-n+q, if mrln, crn = 1 and cm-n+ i  0, i=1,2,...,q

F-'.. = m-n, if m ' n

*~i = 2m-n-1, if m < n

and if m=0, the second equation is not needed.

3b) On the real-frequency axis, p2 (s) is analytic. At s = Jp

* which is a pole of z2 (s) and z2 (-s) of order m, and if m >1,

then

d. = c., i = 0,1, .... m-i (3.103a)

and

dM1 =c m-I + k-( - c0 )/a_m (if degenerate) (3.103b)

andifc 0 = ndc 0 for i = i, 2, .. , q, then

d. = c., i = 0, 1, 2, ... m+q-1 (3.103c)

d = C+q - k_ C /a- (3.103d)
rnq M+-i I +q -r

and if m =1, then

d' do = (c 0 a_ : + k-)/(al + ki) (degenerate) (3.103e)

6. and if m =1 and c0 =1, then d = c =1 and

* :. dl = al c /(aI + k_) (3.103f)

whe.re k- is real and positive.
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3.6 Conclusion

Microwave two-terminal semiconductor devices such as avalanche

diodes, transferred electron devices, tunnel diodes, and varators are

commonly found in modern communications systems. A circulator is

usually used to separate the incoming signal from the amplified signal

in constructing a reflection-type amplifier. For the tunnel diode

amplifier problem, the lossless two-port network is expected to provide

a complete mismatch.

In this study, the two-port broadband matching problem has been

generalized to include both reciprocal and nonreciprocal networks with

an active load. The realization heavily depends on the existence of

0, a real regular all-pass function. If the all-pass function of even

order does not exist, the two-port lossless network can only be

realized by a nonreciprocal network.
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Section 4

REALIZABILITY OF COMPATIBLE IMPEDANCES USING

TRANSFORMERLESS LADDER TWO-PORT NETWORKS

V4.1 Introduction

Section 4 studies the compatibility of two non-Foster positive-

real impedances using a lossless reciprocal transformerless ladder

two-port network. Illustrative examples are presented.

Two impedances are said to be compatible if one of them can be

realized as the input impedance of a two-port coupling network ter-

minated in the other. The problem was first discussed by

Schoeffler [47] and then by Wohlers [54] and Ho and Balabanian [33].

Schoeffler [47] and Wohlers [54] studied the problem of compatibility

between two passive impedances, the coupling network of which is

assumed to be reciprocal. Ho and Balabanian [33] extended their

results to the case where the impedances may be either passive or

active and the coupling networks may be reciprocal or nonreciprocal.

Recently Chen and Satyanarayana [19,46] simplified Wohlers' theorem

and extended the compatibility problem to double impedance matching

by studying the compatibility between the source and load impedances

and, finally, Chen and Tsai [20] extended the problem to active load.

In this section we study the compatibility of two non-Foster

positive-real impedances using a transformerless lossless ladder

two-port network except the ideal transformers which are included

in the discussion. As is well known, the ladder structure is impor-

tant in that it is simple, easy to realize and has low sensitivity.
.,%

The ladder networks have been studied for several decades by many

authors [23,31,49]. In 1979, Fialkow [28] published his work on

LC-R ladders without using transformers. He gave a sufficient
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condition on the compatibility of two non-Foster positive-real impe-

dances using a lossless ladder coupling two-port network (Theorem 13

in reference 28). For the present problem Fialkow, however, did not

elaborate any further.

In the present report, we apply the broadband matching theory to

this problem by studying the compatbility of two positive-real impedances

.J using only transformerless LC ladder two-port networks. Illustrative

examples are given.

4.2 Realizability of LC-R ladders

For an LC-R ladder we express its driving-point immittance as the

ratio of two polynomials of their even and odd parts:

m (s) + nI (s)
'L' " "X(S) =

(4.1I)X.s--m2(s) + n2(s)

The rational immittance function X(s) is assumed to be of order n. Let

E(s 2 ) = m (s)m 2 (s) - nl(s)n2 (s) (4.2)

The transfer polynomials are the polynomials defined by

T(s) = /E(s2) = T'(s) case A (4.3a)

T(s) = v-E(s 2 ) = sT'(s) case B (4.3b)

Call the zeros of T(s) the transfer zeros. T(s) is considered to con-

Lain m finite zeros and (n-m) zeros at infinity [28]. Write
* ' An 2

m (s) = m (s 2 ) n (s) = sn (s 2  (4.4a)

2 n 2 )
S 2 (s) = m2 (s )•  n2 (s) = (s (4.4b)

"-L ilkow [28] gave the fol lowing theorem:
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Theorem 4.1. Let X(s) of (4.1) be the driving-point immittance of

,. 

2

an LC-R ladder. Then each of the following polynomials in q=s

m'(q) - R VT'(q), R m 2 (q) - T'(q) case A (4.5a)

V T'(q), n'(q) - V T'(q), /Rn2(q) - T'(q) case B (4.5b)

has nonnegative coefficients.

4.3 The compatible impedances

We study the network of Fig. 4.1. Write

, Z(S )  m1 (S) + n(S(4.6)

I m2 1 (s) + n2 1 (s)

m(s) n(S)

2(s =m 2 2 (s) + n22 (s) (4.7)

where mi, m2i and nli, n2i are even and odd parts of the numerator and

denominator polynomials of Z.(s) (i=1,2). They are assumed to be
1

relatively prime. Write

( m1(s) + n(.(s)
m (s) + n2 (s) (4.8)

. 2

R

.
N zls)

Z2 (s)

Fig. 4.1. Schematic for Studying thc Compatible InpCdances.
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Then

E1 (s) = mll(s)m 2 1 (s) - n11 (s)n2 1 (s)

= E2 (s) E (s) (4.9)

where

E2 (s) = m 1 2 (s)m 2 2 (s) - n1 2 (s)n 2 2 (s) (4.10)

Ek(s) = M I (s )m 2 ( s ) - n1 (s ) n 2 ( s )  (4.11)

If we augment Z1 (s) by the factor (E+0) where E and 0 are even

and odd polynomials, then after augmentation

2 2
E (s) = [mlt(s)m 2 1 (s) - nll(s)n 2 1 (s)]E _ 2 (4.12)

Since mil and n i (i=1,2) are relatively prime, none of the zeros of

E2_ (E-0 2 ] are purely imaginary [28]. Since Z2(s) is the driving-point

impedance of an LC-R ladder one-port, its transfer zeros lie on the

real-frequency axis. Z2(s) in (4.7) is unique. The augmentation of
2

Z (s) can only balance the transfer zeros of z (s) in the open RHS for

the network. If the transfer zeros of ZI(s) contain those of z (s) in

the open RHS, no augmentation is needed.

Theorem 4.2. Let Zl(s) and z (s) be preassigned rational, non-

Foster positive-real impedances as shown in (4.6) and (4.8). Let

Z I1(s), being an input impedance, be compatible with the terminatedF; impedance z (s) by an LC ladder two-port. Then

(1) The transfer zeros of Zl(s) contain those of z (s)

(2) T' (q), m q) - R T'(q), / m 2 (q) - T'(q) case A (4.13a)

l T(q), n2 (q)- T' (q), AY n 2 (q) - T'(q) case B (4.13b)

2
have nonnegative coefficients where q =s , R is a positive constant, and
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ml n m1 n 
m l

n 1 m2n n n I1-22, 2 -

n 1 nS

r22 1ln2 n2 ml n

n I  m 2  2 n1 2 q=s

case A (4.14a

m2 1  nI m2  m 2 1

Sn21 m I  n2 n2in' =n21''=

12 -22 s
" 2 n 

2 I

2  1 q=s n2  I q=s 2

and

in n in in

21 2 1 21

I n2 1  mn2  n I  n21 -

m22 n 12
i I  n2  m 1  n1

n1  m 2  q=s2  
n 1  m 2  q=s2

case B (4.14b

m n in 2 n1

in in n n11 12 11
n1 2  o22S

Snl n n2  nlln " 2 n s 2

2 I l=s n2  m1  q=s2
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"(q) [(mm s 2 n n 2 case A (4.15a)T'() =[(22m12 i2 snn22) Jq=s

-1 , 2 , , . 12

T'(q) = [s 1(n 2 nl 2 _ s i2 22 q case B (4.15b)
2 2 '12m2 q' s

An outline of a proof of Theorem 4.2 is given in Section 4.5.

4.4 Design procedure and illustrative examples

Given non-Foster positive-real impedances Z1 (s) and zZ(s), tind

a lossless, reciprocal transformerless ladder two-port coupling network

so that when it is terminated in z (s), the driving-point impedance is

Z I(s).

We proceed the design with the following steps.

Step 1. Denote ZI(s) and z (s) as in (4.6) and (4.8). From (4.10)

finl E2 (s). If it is a perfect square, case A applies. If -E2 (s) is a
2 2.

perfect square, case B applies.

Step 2. From (4.14a) and (4.14b) find m' and n' (i=1,2) satis-
i2 i2

fying the conditions of Theorem 4.2, and find the constant R.

Step 3. From

m 2 (s) = mn2 (s) nl2 (s) = snl2 (S) (4.16a)

m2 2 (s) = m2(s) n 2 2 (s) = s n 2 (s) (4.16b)

- find

• m12 ( s ) + nl2(s)

Z2 (s) m 2(s) + n2(s) (4.17)
m2 2(s + 22(s

Step 4. Using Z2 (s) as the driving-point impedance, synthesize a

ladder two-port terminated in R. If R#I, an ideal transformer is

needed whose turns ratio is equal to A.

*1.* 
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We illustrate the above procedure by the following examples.

Example 4.1. Given

8s 2 (4.18)
z.(s) 3(2s+3)

and

z (s) + 4 (4.19)

find a lossless, reciprocal, transformerless ladder coupling two-port

so that when z (s) is terminated at one port, the driving-point

impedance at another port is Zl(s).

First we compute

E1 (s) = (8s + 7)9 - 72s = 63 (4.20a)

E z (s) = 16 (4.20b)

Thus, case A applies. From (4.18) and (4.19)

m1 1  8s 2 + 7 n11 = 12s (4.21a)

m 1=9n21 =6s (4.21b)

m I =4 n I = 0 (4.22a)

m2  4 n = s (4.22b)

2 2

Substituting (4.21) and (4.22) in (4.14a) yields

73



2
8s +7 

s

= 12s 4 20q + 28 (4. 23a)
m\22 16

4 

20 4 q=s

4 8s 2+7

0 12s -1 _48

LL2 =S 1 (4. 23b)
4 

s

0 4 q=s

9 0

12 4 06 (4. 23c)
m1* 2

s 4 q=s

= s 6s -1 15
22 (4. 23d)

2 4 0

2s 4 q=s
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!2

20s + 28 36 2 48 1
T' (q) = s 2 16 1 16 16 2~

=3/ 
(4.24)

4

From (4.13a) when

3 or A (4.25)

the conditions of Theorem 4.2 are satisfied. Substituting (4.23) in

(4.17) in conjunction with (4.16) gives

* ( 48s + 36 (4.26)

2s 20s2 + 15s + 28

Z (s) in (4.26) can be realized as an LC ladder two-port as shown in
2

Fig. 4.2, where an ideal transformer is used to change the impedance

level.

12s/7

'v.12/5s _' _

Z,(S

* Z1 (s)

rig. 4.3. A Ladder Realization of Z2 (s).

S2
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Example 4.2. Given

z() 8s 3 + 24s 2 + 12s + 16 (.7
Z1( 2s + 6s 3 + 5s 2 + 8s (.7

and

z (S) s + 0. (4.28)

find an LC ladder coupling two-port so that Z (s) is compatible with

z (s).

First compute

2 2 4 2 3 3
E (S)=(24s + 16)(2s + 5s)-(8s + 12s)(6s + 8s)

16s2  2 1) (4.29)

E (s 2  -1-s 2  (4.30)

Thus, case B applies.

* . From (4.27) and (4.28), we obtain

m 24s 2+ 16 nil1 8s 3+ 12s (4.31a)

in21 =2s 
4 + 5s2 21 = 6s + 8s (4.31b)

m, 0.5 nI= s (4.32a)

m =2 n2 = s (4.32b)

S.Substituting (4.31) and (4.32) in (4.14b) yields

-I,
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4 2-

2s 4+5s 2 s

m22 4 27< rn;2  6 s 8 - s+2sq22

q =s

24s 2 +16 s

8s 3+12s 0.5
-s 2 2  8(1q (4.33b)

q ~2.q = s

4 2
0.5 2s +5s

3
s 6s +8s -1

12 2ns =2q +4 (4.33c)

O'" 1 2 221

-s
2

q=s

2
2 24s +16

7- 8s +12s

S. s 8 (4.33d)

From (4.13b) when

4 R < 1 (4.34)
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Put PUTOT.
2/s

m~m ' ] 3+0.5

2/s52. " P ell S+21

Z I(s)

j Fig. 4.3. A Ladder Realization of Z 2(s) with R = 1 Q.

%'* "the conditions of Theorem 4.2 are satisfied. Choosing R = 1 Q2, we

obtain from (4.16) and (4.17)

s3 + 4s2 + 2s + 4
Z2 (s) = 2(4.35)

s + 4s

Synthesizing Z2(s) yields the network shown in Fig. 4.3. If we choose

R 12, we can obtain a coupling network of Fig. 4.4, where an ideal

transformer is needed.

s 1/s
2-1

s+ 0.5
1/3 s+2

0* T
ZI (3)

, Fig. 4.4. A Ladder Realization of Z2 (s) with K = 1 Q.

V2SI.,

4.5 An outline of a proof of Theorem 4.2

For the network of Fig. 4.1, Z2(s) is the driving-point impedance

of a lossless, reciprocal, transformerless ladder two-port network
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terminated in a 1-ohm resistor at port 1:

2
z = ll1 z22 - 1 2 + z 2 2  (4.36)

'C-where z . (i,j =1,2) are the open-circuit impedance parameters of N.

Denote

- - P..
zi = 1 (i,j = 1,2) (4.37)

where P.. (i,j =1,2) and Q are relatively prime. Since z.. are odd,
ij 1

Q is odd or even and P are even or odd polynomials of s. Write
ij

-m + n

* 12 12 (4.38)
2 in2  + n

where mni2 and n i2 (i =1,2) are even and odd polynomials, and are

relatively prime. Let

E=m12 m22 -n12 n22 (4.39)

Case A. Q in (4.37) is odd.

z. _ (4.40)

'p.12 n

T A'E (4.41)

For R =1 02, we obtain

z (S) - I z (S) - Z(-s) in2  -n2 (.2
1 1 2 22 22

Denote
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A ml1 +nll

Z m +  (4.43)
21 2

From (4.42) and (4.43), we have

z*M22 I n12

S 1 ( s ) - 1 m1 2 + z n22 (444)
Zl(S) +1 zi

z£m22 + n12 +1

1 12 + z£n22

Since equation (4.44) holds for all s, it follows that

m1 + n 11 z X 2 +n 1ro +n - z22 1n2 (4.45)

in2 + n i +z n
21 21 12 z 22

,.

Write

m in 1

z i2 +n 2  (4.46)

where mi and n. (i=1,2) are even and odd polynomials. From (4.45) and

(4.46) we have

mJ 11 -' m 22m I + n 12 n 2  (4.47a)

n 1 1 = m 22 nI + n 12m2  (4.47b)

and

m 21 * m 12m 2 + n22 n I  (4.48a)

n 21 = m2n2 + n22 mI  (4.48b)

From (4.47) and (4.48) we can solve for
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i n In mI m 2  n I  n1

: m 2 2 = m n 1 2 l n 2( 4 . 4 9 a )
m11 n 2 m1 n11

n In m 2  n1 m 2

m21 n2 m 2  m21

n n21 m I  n 2  n 21= n,2 = (4.49b)2 nI  m2 n

n 2 MIn 2 mIn

12 1 22

From n md m2

1 1e I condition 2 n 21

= n2  =(4.52)

12  z2 k2 2  22

S

~~~~~~From (4.52),T i anod p ynm a . T u weh v
l + n + ( +

m2 1 12 + m22'.
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we obtain

m =m m + n n(45a
11 12 2 22 1(44a

Sni =m1 n2 + n 2 m1  (4. 54b)

and

2 m m +22 1 12 2(45a

n21  m2 n1 + n (4. 55b)

-~which can be solved to yield

m n ml m2
21 2 1 2

n2 m2  n n2

i 2 2  m 1  nn2
12 = ml n 2 -(46a

%m1 2  n1  ?n

m l, n 
m 2 m 111 m n 2 n11

= (4.56b)
12 22 m

*2 1 m

n U 2 1 n2 'm'I

Applying Theorem 4.1 we obtain condition 2 of Theorem 4.2 for case B.

4.6 Conclusions

In this section we presented a theorem on the impedance compati-

bi',ity of two non-Foster positive-real impedances where the coupling
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"-" network is an LC ladder two-port, thus solving a problem posed by

,- '"Fialkow [28].

5A procedure for finding an LC ladder coupling network between

Ktwo compatible impedances and two illustrative examples were given.

'"

'
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Section 5

A NEW DIPLEXER CONFIGURATION COMPOSED OF A THREE-PORT

CIRCULATOR AND TWO RECIPROCAL TWO-PORT NETWORKS

5.1 Introduction

Section 5 presents a new diplexer configuration composed of an

ideal three-port circulator and two reciprocal lossless two-port

networks. Since the circulator provides the needed isolation, it

becomes much easier to achieve the desired insertion loss at the

crossover frequency as well as the frequency shaping. We show that

the diplexer with the canonical Butterworth response can always be

realized. Only one of the two-port is needed if the required inser-

tion loss at the crossover frequency is 3 dB. The design of a

diplexer composed of a circulator and two canonical Butterworth

networks having low-pass and high-pass characteristics is discussed.

In this case, the problem is simplified to that of realizing two

Butterworth networks.

- The design of a diplexer separating a frequency spectrum into

"V two channels of signals is one of the basic problems in communica-

tions. The most popular configuration of a diplexer consists of a

low-pass two-port network and a high-pass two--port network connected

either in series or in parallel, as shown by many workers [37,40,42,61).

Because of the mutual interaction effect of the two-ports, the

transducer power-gain characteristic of a diplexer is different from

those of the individual two-ports. This makes the design of a

diplexer very complicated. Recently Wang and Chen [51) presented a

'1 design approach where the diplexer is composed of two canonical

Butterworth networks. Their problem is simplified to that of choosing
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the order of the Butterworth response and the cutoff frequencies of

the component two-ports.

In this section we present a nonreciprocal diplexer configuration

composed of an ideal three-port circulator and two reciprocal lossless

two-port networks, terminating in the source and loads as shown in

Fig. 5.1. Since the three-port circulator provides the needed isolation,

R- III ..  . ..

• '<'" " NaR 2 = ,q

NNb

N

Fig. 5.1. A Diplexer N Composed of an Ideal Circulator and

Two Reciprocal Lossless Two-Port Networks.

it is much easier to obtain a desired insertion loss at the crossover

frequency as well as the frequency shaping. Having expressed the

6.. scattering parameters of the diplexer in terms of those ot the compo-

nent networks, we show that the diplexer with canonical Butterworth

response can always be realized. The diplexer can be simplified to

that shown in Fig. 5.2 if the required response is of Butterworth type

with 3 dB insertion loss at the crossover frequency. In this case only
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Fig. 5.2. The Diplexer Possesses the Butterworth Response with a
3 dB Insertion Loss at the Crossover Frequency.

one of the reciprocal two-port networks is needed.

Next we discuss the diplexer composed of a circulator and two

canonical Butterworth networks having low-pass and high-pass charac-

teristics. We show that the frequency response of the diplexer is

only slightly different from the canonical Butterworth response.

The problem reduces to that of choosing the parameters of the two

Butterworth networks. Only one of the cutoff frequencies of the

two ports needs to be adjusted to satisfy the specification of inser-

tion loss at the edges of the pass bands. Computer programs for

-p

* obtaining the final circuit configuration, the element values and

the frequency response curves are available.

p.

5.2 The scattering matrix of a nonreciprocal diplexer

The general configuration of a nonreciprocal diplexer shown in

Fig. 5.1 can be viewed as an interconnection of a three-port circulator

N and a reciprocal four-port network Nb where Nb is formed b the
a b

two-port networks N and N . Without loss of generality we assume that
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R = R = r = 1 2. The partitioned unit normalized scattering matrix
4, 1 2 s

S (s) of the ideal circulator N can be expressed in the form [14]"4 -a a

SS 0' 1 0
"-ha '12a a

S (s) = = (5.1), a 0 0 1

rS2 a $22aI 0

Assume that the scattering matrices of the reciprocal two-port networks

N and N normalizing to the 1-0 resistance are given by

S 8 Ila 1

s (S) =(5.2)
j1±

* 21a IS S2

S(s) = (5.3)

-4.6

""'LS210 s 22 J

The partitioned unit normalized scattering matrix of the four-port

network N becomesibZ--
SI0 S 126 0

-''.' t 2b$118 $2218S 0 S 0 S
~-1 142b 1lc1 I 128

.1 (S --- ---------- ----------------- (54

-S, S 0 S 0
21 22'1 228

0 1 0 S2a
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Let the partitioned scattering matrix of the composite three-port

, -. network N (the diplexer) normalizing to the 1-0 resistance be

1 2 11 12 131

F" 21 ... s,2~
= = ------------

= =) (5.5)

S s 121 S2 2  23S 2S
21 2.j S3 S32 $3L31 ~ 33

where the subscripts 1 and 2 refer to the ports connected to the source

and the loads, respectively. The interconnection formulas which relate

the scattering matrix of the composite network N and those of the compo-

nent networks N and Nb are given by [14]

SS (S --1 SIa + S12a(U2 - Sllb;S-22a -llb--21a (5.6)

S (S) = S (U -ll S 22a S (5.7)

S21(s) =  21b(U2 - S22a llb) S21a (5.8)

-1
'22(s) = 22b + S21b(r2 - S22a lb )  S22aS12b (5.9)

where U 2 denotes the identity matrix of order 2. Substituting (5.1)

and (5.4) in (5.8) yields

s 02 1 Sl l0 1 Sa.,,

...2 1 r 11. 1

-:[21 s,]: 1 = s] 2* (5. 10)
21 $2 1 $c 1.21 0
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As is well known, the jw-axis magnitude squared of the elements of

S., 1 (s) represent the transducer power gains from the source to the

loads. Therefore, (5.10) can be rewriLten as

-21(s (5.11)

or

S21 (s) = S11  S (5.12)

* S3 1 (s) S 2 1a(s) (5.13)

The transducer power-gain characteristics of the diplexe- become

G ,2 (2) Is( 2 -s (jw2 IS (j 12 (5. 14)

G G) IS, ) 2 (5.15)

We conclude from the ;ibove observations that tilt problem of

designing a nonreciprocal diplexer to satisfy the specified trans-

ducer power-gain characteristics G 2 1 G 2) and G 3 1(G),2) reduces to

Lhat of designing two reciprocal lossless two-port networks N ccand

Nhaving the transducer power-gaini characteristics:

Is 2 o(3 (5.16)

and

2 
2

Is 2 1(1( ) (5. 17)
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From (5.12) and (5.13), the scattering parameters of N and N 6 are

found to be

S2 1a(s) = S3 1(s) (5.18)

(s) = (5.19)

%

5.3 Butterworth response

Consider a diplexer formed by the connection of an ideal circula-

tor and two reciprocal two-port networks. Assume that the diplexer

possesses the Butterworth response. The transducer power-gain charac-

teristics from the source to the loads are given by

(W2 I (w)I2 = K (5.20)
il il + (/W )2n

c

K. (w/u")
2 n

G(W 2  = Isj(j)l 2 = c (5.21)
j'i ji + (W/") 2

respectively, where i,j = 2 or 3, i#j. Equation (5.20) represents a

low-pass Butterworth response, where w' is the 3-dB radian bandwidth
c

* or radian cutoff frequency and 0 < K. < 1. Equation (5.21) is a high-

pass Butterworth response with 3-dB cutoff frequency w" and 0 < K. < 1.
c -

Without loss of generality we assume K. = K. = 1. By appealing to the
1 *J

*,- theorem on the uniqueness of analytic continuation of a complex

variable function, we obtain for the low-pass response

Gi1(-s2 = i (s)S. - (-- - - - --- (5.22)
it (s) + (_1 )n_2n q(y)q(-)
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the minimum phase solution of which is

S (s) (5.23)
q(y)

'where

y = s/' (5.24)
:q C

and q(y) is the Butterworth polynomial. Similarly, for the high-pass

response

2n 2nCj (-s 2 ) = j(S (-s) - z _ z2-",Z - -_ (5 .2 5 )
G ()S ji I + (-1) n2n q(z)q(-z)

the minimum phase solution of which is

n
SjI(S) = q(z) (5.26)

whe re

z = s/A" (5.27)
c

For simplicity, throughout the remainder of the paper we let the cross-

over frequency be 1. If the low-pass and high-pass responses are of

the same order, it is straightforward to confirm that the condition to

obtain a symmetrical characteristic with respect to the crossover

frequency is given by [51]

w' =l/e"(5.28)c c

For

= 1 (5.29)
C C

the diplexer gives a symmetrical chiracteristic with a 3-dB insertion

.r. loss in each channel at the crossover frequency.
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Depending upon the distribution of the responses in both channels,

two cases are considered:

Case 1. G 31(W2) is a low-pass Butterworth response and G 2 1 (W 
2 ) is

a high-pass response, i.e.

S31 (s) = 1(5.30)
31 q(y)

n

21 q(z) (.1

From (5.18), the scattering parameter S 2a(s) of the two-port network

N is given by

S (s S3 1 (s) q~)(5.32)

By appealing to the para-unitary property of the scattering matrix

for a reciprocal lossless two-port network, we obtain

n
Sii(s) qY) (5.33)

Ila q44

Substituting (5.31) and (5.32) in (5.19) and referring to (5.27) yield

the scattering parameter of S s of N as

S ~21 (s)
S 2 15 (s) =

- zn qy 2n q(y)

Y n q(z) 0 c q(z) (.4

From the above discussions, it is interesting to see that N can
a

be red1li-cd as a canonical low-pass Buttterworth network. To realize

NVwe derive its scattering parameter Si 1,(s) and the impedanceZ (s
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looking into the input port. Applying the para-unitary property of

.- the scattering matrix yields

S110(S)S 11 a(-s) I1 (S)S2

.,. , 4n
W 4n q(y)q(-y)

q(z)q(-z)

I W,4n 2c (5.35)
q(z)q(-z) q(z)q(-z)

where

8 = (1 - WI4 n) (5.36)
C

* is a constant relating to the 3-dB cutoff frequency w and n. The
C

minimum-phase decomposition of (5.35) is given by

q () (5.37)110() q(z)

The input impedance Z 11 (s) is found to be

1-S 16(S) qz
(S 1 ) 118 - q(z) - 8 (5.38)

1(S =1 + S 11 (s) q(z) +

We will show that this impedance is a positive-real function.

*According to the Darlington theory [22], it can be realized as

the input impedance of a passive, lossless reciprocal two-port

network terminated in a nonnegative resistor. Therefore, both

N and N are realizable.

As a special case if the diplexer requires a 3-dB insertion

loss in each channel at the crossover frequency, the cutoff frequen-

cies of the networks N and N are related by (5.29), implying that
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.y = Z (5.39)

and from (5.34)

S2 18 (s) = 1 (5.40)

The diplexer is simplified to that shown in Fig. 5.2. Therefore, only

one Butterworth network is needed.

Case 2. G 31(W 2) is a high-pass Butterworth response and G21(W2

is a low-pass Butterworth response, i.e.

i n

$3 (s) qz ) (5.41)

.and

S21) q(y) (5.42)

' .From (5.18) the scattering parameter S21(s ) of Na is given by

a 3 1 q(z) (5.41)

?-€. Like case 1, by appealing to the para-unitary property of the scattering

~matrix, we obtain

. (s) (5.44)

dSubstituting (5.42) and (5.44) in (5.19) yield

S2 (s) 1  = 1(s)

21a IsIla (s) q(1y) /q (z)

q(z) (5.45)

, Thus, N acan also be realized as a canonical high-pass Butterworth
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network. To realize N, we express S ll(s) and ZlB (s), as follows:

S ll(s)S (-s) 1 - 2t(s)S21 (-s)

2 . = (5.46)

q(y)q(-y) (.6

the minimum phase solution of which is

" (Sn= (5.47)
q(y)

The impedance looking into the input port is found to be

I. - S (S) =y) - n
Z (s) = - S+Y- (5.48)
lI S (S) q(y) + By n

'%

We show that Z ll(s) is positive-real, so that N is always realizable.

If the diplexer requires a 3-dB insertion loss in each channel

at the crossover frequency, we substitute (5.29) in (5.45) and obtain

S' S2 1B(s) = 1 (5.49)

The diplexer is simplified to that shown in Fig. 5.2, where N is a

high-pass Butterworth network.

-Example: Design a symmetrical diplexer having a second-order

canonical Butterworth response with wj' = 0.7, where w' is the 3-dB
- c c

cutoff frequency in the loss-pass channel.

We assume that Ncc is a Butterworth low-pass network of order 2

-, and w' = 0.7. From (5.33)-(5.37) we obtain the following for network

N:

S,2n c(v) - ,2 y v + I
1 (s )  == ' 2 -+ (5.50)_V.'1, c q ( z) 1 2

z + 2z + I
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where v = s/wI and

z = s/W" = sw' (5.5!)C C

' , 4n)
I= ( - '-= 0.97075 (5.52)

z (s) = (z -) . + z + I - (5 53)
ZrlB q(z) + z 2 + ¢ z + I +

The two-port N is realizable as a Butterworth low-pass network, whereas

N can be realized by applying the technique proposed in [57]. The

final circuit configuration and frequency characteristics are shown in

Figs. 5.3 and 5.4, respectively. The insertion loss at the crossover

- frequency is found to be 5.37 dB.
'

n1 n,:1

+ 1.7678 H

N a

V 7 Fig. 5.3. The Circuit Configuration of Example 1, where N. is a Butterworth
Network. The Parameters of the Two-Port Network N B are given, as

.. fol lows:

.5-3

.. L1  = 0.6219 11, ]12, 1"309x10- H, M l  0.0285 H, L3  0.0402,

11 4 =  0.02768 H, M 2  = 0.0334 H, C a  =80 8F, C b  =64.28F, n B 0.01484
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40,

u .
30-

4. dB
r" 20

220 log S2 (w) I

20 log jS3 1(w)I

0__ _ 20o g IS21,0M(,,)

0 0.4 0.8 1.2 .6 2.0

w(rod/s)

Fig. 5.4. The Frequency Response of the Diplexer Possessing

~the 2nd Butterworth Characteristic. The Insertion

Loss at the Crossover Frequency w =1 is 5.37 dB.

44,

I';-" .5.4 A diplexer composed of a circulator and the canonical Burterworth

networks

SThe approach metoe nteforegoing rslshosa diplexer

having he can naButror nthe resposulnb t chnnes.Aexml

! showed that the required characteristic for N B is different from the

..

canonical Butterworth response, and that the problem to design N is

much more complicated except for the situation where a 3-dB insertion

* loss is required at the crossover frequency.
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%. S21 (5) •S11a(s) S21,(s)

1@10

S21•(s)SS31 (S) 03

eFig. 5.5. An Equivalent Representation of Equations (5.18) and (5.19).

An equivalent representation of (5.18) and (5.19) is depicted in

the block diagram of Fig. 5.5, where the existence of the block S ll(s)

requires the characteristic of N ato diverge from the Butterworth

response. Figure 5.6 shows the plots of Is (jw)l, Is 0 1 I and

functions of w where S (s) and S are required to

possess the low-pass and high-pass Butterworth responses of order 4

wih(,3' = 0.7 and w" = I/o)'. We ntc httevleo 0lgi j~wth c d c n.,w e tha e tevae of lo a

is much smaller than that of the Butterworth response 20 log is21(jw)l,

so that in this channel the contribution of S1 (s) is much smaller than

that (of Sa(s). Thus, if S 21 (s) is required to possess the Butterworth

response, the overall response Is a(dW) =t r(w)sos(jw) plotted in

.''Fig. 5.7 is usually close to the Butterworth response especially in the

passband. The deviation becomes smaller as the order and/or the 3-dB

cutoff frequency is increased.
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I-.-
-'9 40-

• 2Olog ls.,lW)l

30

20log IS2 ,p(W)I

-, dB
A. 20-

20 log is110(uj)I

4 10-

A.'

04 0.8 1.2 16 2.0

W (rod/s)

Fig. 5.6. The Frequency Response of a Diplexer Having Butterworth
Characteristic of Order 4 with w' = 0.7 rad/s.

C

From a practical viewpoint, it is desirable to choose both N and

N to be the Butterworth networks. The additional loss at the passband

edge may be corrected by adjusting the cutoff frequency of NV where

the original required cutoff frequencies are assumed to satisfy the

symmetrical condition (5.27). To facilitate our discussion, two casesS
are considered:

Case 1. G3 1 (w2) is a low-pass Butterworth response and G21(W)

is a high-pass response. The transducer power-gain characteristics
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0-

30-

20kog S21(WAI
20Olog IS219(W) I

dB
20-

20 lg IS 2 1 aw)1s20 ogIS3 (o)!

510-

0 0.4 0.8 1.2 16 20

w(rod/s)
Fig. 5.7. The Frequency Response of a Diplexer, where N. and N

are Canonical Butterworth Networks of Order 4 with
-~u)' = 0.7 rad/s.

C

G 3 1 (W2) and G 2 1 (W2) are shown in (5.20) and (5.21), respectively. The

additional power loss corresponding to the terms S 1a(jw) in

I,, 1Wjw2 (5.54)

Now suppose that we change the cutoff frequency of N from w" to wi" +
c C

to cancel the above additional loss. The required 6w" can be
C C

Obt-iinud by solving the fol lowing equation
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S. ' w," 12 . ,, 2 (. ,, , 2

-"" s~ (jw")I2 - Is21 j(iu,)I = I 1 l( <c)I (5.55)

where Is21 (iw)L2 is the transducer power-gain characteristic of N with!6

* .i. the adjusted cutoff frequency w" + 6w". The solution of (5.55) is given
C C

by

it + 6W1 2 -n (5.56)c c W,4n

2 2
Case 2. G3 1( 2) is a high-pass Butterworth response and G 21()

is a high-pass response.

In this case, the cutoff frequency w' of the low-pass network N6

C

need to be adjusted. Like case 1, we obtain

7-

W1+- = + 1 - 2n (5.57))...-'c c c, 1 4 n

c

Examples illustrating the above results are listed in Table 5.1.

The circuit elements and frequency responses are plotted in Figs. 5.8

through 5.11 by the computer program DIPLX2.

Table 5.1. Frequency Characteristics of Diplexers of Various Orders.

-dlS cutoff 3-dH cutoff Insertion loss Insertion loss

fr i"Ilcy of frequency of at the passband at w . I rad/s Circuits and
ordr If~. l1.VA.r ti. two-portis edge In dS dh response curves

- i" low-pas hlKh-pa.s low-pass high-pass

1 /0u .7 0.7 1..2Zt 3.0103 3.0103 9.777 10. 153 Figure 8 (a)(b)

S1 10. 7 u.700.5S 1/0.7 3.0103 3.0103 I..5- 12.636 Figure 9 (a)(b)

5 7I) 0.7 1..,18. 3.0103 3.0103 15.611 15.725 Figure 10 (a)(b)

110. U. h 0 18 1/0.8 3.0103 3.0103 I0..187 10.134 Figure 11 (a)(b)
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'.:,'.0.3503 F

It 707 1 t

0.7007H 0.7007H

vg, 2.857(s)

-48I.4286F 1.4286F. % 
- _ ____ J

Fig. 5.8(a). A Diplexer Configuration Composed of a Low-Pass Butterworth

Network of Order 3 with w' =0.7 rad/s and a High-Pass
c

Butterworth Network of the Same Order with the Adjusted

Cutoff Frequency w" =1.4272 rad/s.
C

20.

O 5
- 15-

..'
dB

10-

,- . l o Is 3 ,( ) l I0 0 s 2 , ( ) l
-- 5-

-'-F 20logS 3 (t 20logS 2 (I

.

.

0 0.4 08 12 1.6 2.0

w(rad/s)

Fig. 5.8(b). The Frequency Response of a Diplexr, where N is a Low-
Pass Butterworth Network of Order 3 with W' =0.7 rad/s

and N is a High-Pass Butterworth Network of the Same

Order with the Adjusted Cutoff Frequency oc= 1.4272.
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*2.6387M 1.0930H

1.0930F 2.6387F
in

2.-

V, (S)

0.9146H 0.3788H I,

Fig. 5.9(a). A Diplexer Configuration Composed of a High-Pass Butterworth
Network of Order 4 with w"e=1/0.7 rad/s and a Low-Pass
Butterworth Network of the Same Order with the Adjusted
Cutoff Frequency w' =0.70025 rad/s.

20-

,%"

d8

10-

20logS 2 ,(w)l 2olog IS3,(W)l

5-

0 04 0.8 1.2 16 2

w (rod/s)
Fig. 5.9(b). The Frequency Response of a Diplexer, where N. is a

High-Pass Butterworth Network of Order 4 with w"=I/0.7
rad/s and No is a Low-Pass Butterworth Network of the
Same Order with the Adjusted Cutoff Frequency w, =0.70025
rad/s.
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0.4326 F 0.4326 F

1.1326H 0.35H 1.1326H I

:In

Fig. 5.10(a). A Diplexer Configuration Composed of a Low-Pass Butterworth
Network of Order 5 with w =0.7 rad/s and a High-Pass
Butterworth Network of the Same Order with the Adjusted

Cutoff Frequency w" =1.4285 rad/s.

V.. 40-

30- 201og1 S2 (&)I 201og1S31(w)I

d8

20-

10-

*0 0.4 0 8 12 156 20

w (rod /s)

Fig. 5.10(b). The Frequency Response of a Diplexer, where N is a Lo~w-
Pass Butterworth Network of Order 5 with wc . a/ n
Nis a High-Pass Butterworth Network of the Same Order

e. with the Adjusted Cutoff Frequ~ency w" 1.42,95 rad/s.
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2.0205 H 2.0205 H

Vg S) 0.4944F 0.4944 F
iin

1.2944H O.40H 1.2944H i1

Fig. 5.11(a). A Diplexer Configuration Composed of a High-Pass Butterworth
Network of Order 5 with w"=1/0.8 rad/s and a Low-Pass ButterworthC

Network of the Same Order with the Adjusted Cutoff Frequency
w' =0.8008 rad/s.

c

40,

.d.

...-

00

-. 30.

dB
20- 20logS 31(w)I 20 oq1 s2 l(w)I

A20.5-

• 10

.

0 04 08 12 16 2r

.- oC (rdIs)

Fig. 5.11(b). The Frequency Response Curves of a Diplexer, where NO is
a High-Pass Butterworth Network of order 5 with w"=1/0.8
rad/s and N is a Low-Pass Butterworth Network of the Same
Order with the Adjusted Cutoff Frequency w'=0.8008 rad/s.
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5.5 An outline of a proof of the positive-realness of Z1ll(S)

We show that the rational functions given (5.38) and (5.48) are

positive real. Thus each can be realized as the input impedance of

a passive, lossless reciprocal two-port network terminated in a non-

negative resistor.

The following theorem presents the positive-real conditions of

a rational function [14].

Theorem. A rational function represented in the form

f(s) = - 1 + n (5.58)
P2 (s) m2 (s) + n2 (s)

where mi, m 2 and n1, n2 are the even and odd parts of the polynomials

p. (s) and p2 (s), respectively, is positive real if and only if the

following three conditions are satisfied:

(i) f(s) is real when s is real.

(ii) pl(s) + P2 (s) is strictly Hurwitz.

(iii) m 1(JW)m 2(Jw) - nI(jw)n 2 (jw) > 0 for all w.

Consider function (5.37) rewritten as

Z (s) g(s) - a = in(s) + n(s) - (5.59)
- 1S q(s) + 0 r(s) + n(s) + 0

where q(s) is a Butterworth polynomial and 0 < 0 < 1. If 1 1, the

two-port network becomes a Butterworth network. The first condition

is clearly satisfied. Since the tested function p (s) + pl(s) of (5.59)

is the same as that of the canonical Butterworth network with I = 1 in

(5.59), the second condition is satisfied. Finally to test condition

i! (iii), we compute
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ml(s)m2 (s) - nl(s)n2 (s) = m 2 (s) - 2 (s) - (5.60)

For Butterworth network with 1 = in (5.60), condition (iii) is satis-

fied. Thus, the function Z 1 10 (s) is positive real.

We now consider the function Z (s) (5.48) rewritten as

Ila

Z (s) =(s) - yn =r(s) + n(s) - Oyn (5.61)
q(s) + 0yn  m(s) + n(s) + yn

Conditions (i) and (ii) are clearly satisfied. We next compute

n I(s)m 2 (s) - nI(s)n2(s) = m2 () - () ± n)2 (5.62)
.N

The plus sign corresponds to n odd and the minus to n even. Since0
condition (iii) is satisfied for Butterworth network with 8 = 1.

The function Z11 0(s) of (5.61) satisfies the third condition. Thus

it is positive real.

5.6 Conclusion

In this section, we presented a new diplexer configuration com-

posed of an ideal three-port circulator and two reciprocal lossless

two-port networks. Having expressed the scattering parameters of a

diplexer in terms of those of the component networks, we considered

.the design of a diplexer having Butterworth response. The diplexer

having canonical Butterworth response is always realizable. In this

case, only one of the two-port networks is needed if the insertion

loss at the crossover frequency is 3-dB. In the case where both

two-ports possess the canonical Butterworth response, the final

response of the diplexer is slightly deviated from the canonical

Butterworth characteristic. To keep the bandwidth or the insertion
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loss specification at the passband edge, slight adjustment of the cut-

off frequency of N is necessary. The final response is very close to

the canonical Butterworth characteristic.

The approach presented here can be extended to the design of a

diplexer having other types of responses, such as the Chebyshev or

elliptic response. The above configuration can also be extended to

the design of a multiplexer where an n-port circulator is used instead

of a three-port circulator.

W
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Section 6

A MULTIPLEXER CONFIGURATION COMPOSED OF A

MULTI-PORT CIRCULATOR AND RECIPROCAL TWO-PORT NETWORKS

6.1 Introduction

Section 6 presents a nonreciprocal multiplexer configuration com-

posed of an ideal multi-port circulator and a number of reciprocal

* two-port networks. Fundamental formulas which relate the scattering

. parameters of the multiplexer to those of the reciprocal two-port

networks are derived. A multi-port circulator can always be realized

as an interconnection of the three-port circulators. Design procedure

for the proposed nonreciprocal multiplexer is given. A computer pro-

gram MUPLX is available for computing the circuit element values as

well as the final frequency response.

The design of a multiplexer separating a frequency spectrum into

the individual channels of signals is one of the basic problems in

communications. The most popular configuration of a multiplexer con-

sists of the reciprocal two-port networks connected either in series

or in parallel, as shown by many workers [37, 40, 42, 51, 61].

Recently Wang and Chen [52] presented a nonreciprocal diplexer

configuration composed of an ideal three-port circulator and two

reciprocal lossless two-port networks, terminating in the source and

two loads. The configuration permits the specification of the inser-

tion loss at the crossover frequency as well as the frequency shaping.

In section 6 we extend the above diplexer to an N-channel non-

reciprocal multiplexer composed of an ideal (N+1)-port circulator and

N reciprocal lossless two-port bandpass networks, terminating in the

source and loads as shown in Fig. 6.1. Havi..6 L^pressUIi the scattering

parameters of the multiplexer in terms of those of the component

109

.. r I



".,

N (N)R N I

N b

•~ N l z z l 0

*,.
,

+N

aVg Cs)

V,...:

Fig. 6.1. A Nonreciprocal Multiplexer Configuration.

-networks, we derive formulas which relate the scattering parameters of

the multiplexer to those of the reciprocal two-port networks.

Another important problem is the realization of a multi-port

circulator. An arbitrary multi-port circulator can be realized as

an interconnection of the three-port circulators. Design procedure for

the proposed nonreciprocal multiplexer and illustrative examples will

be discussed in paragraph 6.4.

U. 6.2 The scattering matrix of a nonreciprocal multiplexer

* 4, As an extension of a three-port circulator, the multi-port circulator

is defined by the unit normalized scattering matrix

.

F, 110
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0*0 LO~

where n is the number of the portc, and U n- denotes the identity matrix

of order n-i.

The general configuration of a nonreciprocal multiplexer shown in

Fig. 6.1 can be viewed as an interconnection of a multi-port circulator

Na and a reciprocal multi-port network Nb , where Nb is formed by the

two-port networks. Without loss of generality we assume that the source

resistance and the load reistances are 1 0. The unit-normalized

scattering matrix (6.1) can be repartitioned in the form

0 1 .... 0 0

o 0 1 .... 0o
§11a S12a

I
S (S) =]-. . .. . (6.2)

LLS S2  0 0 0 .... 0 1

1 i 0 0 .... 0 0

where the port connecting to the source is numbered as port 1.

% Consider a general N channel multiplexer of Fig. 6.1, where the

*. multi-port circulator possesses N+I ports. Assume that the scattering

matrices of the reciprocal two-port networks N(1), N(2 )' .... N(N)

normalized to 1-0 resistance are given by

S .

11(7 12(i)

S (s) = , i = 1, 2, ... N. (6.3)

$21(s) $22(i)j

, N, V"" " -. .,.,-- . .---- , ,-,-,,.-.-w... . , ., v , w ""-"'--'"-"'":""- ''" " ' "; ' " "' w :Lk"



0i
The partitioned unit-normalized scattering matrix of the 2N-port

reciprocal network N becomes
b

i , S b (s)= S S

_2lb -22bJ

" S 0 .... 0 0 .... 0
1(N) s12(N)

,- 0 S ll(NI) .. . 0 0 S 12(N-1) .. . 0

".: 0 0 .. . S 110 0 0 ...) 2 l0 0 . ..... 0 : 0 .... 0

21(N) 022(N )

0 21(N-1) .... 0 0 22(N-1)

0 0 .... 021(i)  0 0 .... 0

21(N)220

.Let the partitioned scattering matrix of the composite (N+l)-port

'**' network N (the N-channel multiplexer) normalizing to the I-SI resistance be

11 S12  •22N0

S S I $ S 22 .0 0,N+)

,'-S(s) = (6.5)

221 2

-..

S

N+,1 SN+1,2 "" N+I,N+
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The interconnection formulas which relate the scattering matrix of the

composite (N+1>-port network N and those of the component networks

N and Nb are given by [14]
ab

, ll(S) = Slia + S12a(UN - Sllb-22a -  11 Slb'21a (6.6)

Sl 2 (s) = S12a + (UN - S lbS22b) -12b (6.7)

S2 1 (s) = S21b(UN - S22a41b) - $21a (6.8)

S-1 S22aS2b (6.9)
22 (s) = $ 22 b + S 21B(U N - $22aSl b )  S22a-iL

where U denotes the identity matrix of order N. Substituting (6.2)
-N

and (6.4) in (6.8) yields

S S 0 .... 0
21 21(N)

" 0 S... 0
31 21(N-1)

s21 (s) -

1 N+I,l 0 0 $21(1)

0 1 0 .... 0 0 SII(N) 0 •.. 0

0 0 1 .... 0 0 0 Sll(NI) 0

. U

'N .

0 0 0 .... 0 0 0 0

0 S21(N )  0 ... 0 SII(N-I)SII(N-2) ... S 110 )

0,- S21(N-1) ... SI S (N . S
* 1(N-2)S11(N-1) .. 11(1)

00 0 ... S2() SII
0 0"' 21(1) 1ll(1)

pL m
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21(N)S i (N_ ) S ..(N_2) .. SI1(0 )

21(N-I) SI(N-2) S 1(N-3) ... SI(1)

(6. 10)

21(2)S11(1)

.

$ 21(I)

To avoid the confusion in subscripts, we renumber the elements of

SS21 (S) as follows:

S 21 SM(N)

31 S21M(N-)

21 (s) (6.11)

SNI S 21M(2)

S 
S-.. N+ ,1 S21M(1)

where M stands for multiplexer and the numbers in the parentheses cor-

responding to the numberings of the reciprocal two-port networks. Thus

,',U (6. 10) can be rewritten as

S S S S ... S$2 N(N) $21 (N)S11](N- 1) S 11(N-2) .- S 1(2)Sl1(1 )

S S. .

-21M(N-1) S21(N-I)SII(N-2) 11(N-3) Sll(1)

= 1 s (6.12)

SS S$21M(2) 21(2) 11(1)

S 21M(l) 21(l)

N,.

114

0,
.5-

,* 4* ","5 % . , ,- . "".",=r , ""-""""m"*"-% . ,"",'. , ,'% , ' , "'" , " ,'"''",



The scattering parameter S 21M(i) is obtained as

S21M(i) = 21(i) SI(i-I)Sl(i-2) ... SI1(1)

i-I
= S nl S , i =1,2,...,N (6.13)

21(i) 11(k).

The transducer power-gain characteristics of the multiplexer become

-i - I1

G G21M(il) = S21Mi)(jw)1 2 = IS21(i)(JW)l 2  n r Sll(k)(] w)12 (6.14)~k=l

i = 1, 2, ... , N

To obtain the required transducer power-gain characteristics, we calculate

the scattering parameters S21(i ) of N , i=1,2,...,N. From (6.13) and

(6.4) they are found to be

S M(i) (s)
' 21(i) (s) = i-I , i=1,2,... N (6.15)

n" S S11(k ) (s)

k=1

Thus we reduce the problem of designing a nonreciprocal multiplexer to

2satisfy the specified transducer power-gain characteristics G21M(i) (o)

i =1,2,...,N, to that of designing the reciorocal two-port networks

N N(i )  i=1,2,...,N.

6.3 Realization of a multi-port circulator

In this section we show that an arbitrary multi-port circulator

can be realized as an interconnection of the three-port circulators.

Figures 6.2 and 6.3 are the examples of four-port and five-port

circulators composed of two three-port circulators and three three-port

circulators, respectively. The unit normalized scattering matrices
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NIP, - 0

0-0

-- -- - -----

00

Fig. 6.2. Realization of a4 Four-Port Circulator.
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of the composite multi-port circulators can be obtained by means of

the formulas (6.6)-(6.9). For the circulator networks, these formulas

reduce to

.,sl =0 (6.16)

S12 =5 S (6.17)-12 -12a-l2b

'-$21 $21bS-21 a  
(6.18)

22 22b 22a (6.19)

Now consider the network shown in Fig. 6.2. The partitioned

scattering matrices of the three-port circulator N and the five-porta

network Nb are given by

s - 0 1 (6.20)

0 0 1 0 0

0 0 ' 0 1 0

--- .------ ----------------
S = 1 0 0 0 0 (6.21)

0 0 0 0 1

0 1 0 0 0

rcspectively. The unit-normalized scattering matrix of the resulting

network can be readily obtained by using (6.16)-(6.19):

0 1 0 0

. ". 0 0 1 0
0 0..= =J=(6.22)

01

1 0 0 0
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which is the scattering matrix of a four-port circulator.

To obtain the scattering matrix of Fig. 6.3, we use the partitioned

scattering matrix of the six-port network Nb which is found to be

%

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

-b 1 o o(6.23)1-- S 0 0 0 0 0 (.3

0 0 0 0 0 1

0N 0 0 0 0

By (6.16)-(6.19), the scattering matrix of the five-port circulator

0 :f Fig. 6.3 is obtained as

0 1 0 0 0

0 0 1 0 0
o = - --- (6.24)

"0 0 0 1 0

% , 0 0 0 0 1

i 0 0 0 0

We now interpret the above results from the power transmission

characteristics of the circulator. As is well known, in a three-port

circulator the wave entering port I is transmitted to port 3. The

,ravc entering port 3 is transmitted to port 2, and the wave entering

,ort 2 is transmitted to port 1. This is represented schematically

the arrowF in Figs. 6.2 and 6.3, respectively. Their scattering

i-:)trice .; (6.22) and (6.24) are determined from the power transmission

requirements of Figs. 6.2 and 6.3. The above results can be extended

tha interconnection of the multi-port circulators. Figure 6.4 is

.i0 ill ustrative example in which the interconnection of two three-port
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0-0

0-0

S0 -------

0

' 0

N Nb
a, b

Fig. 6.4. Interconnection of Two Three-Port Circulators and a
Four-Port Circulator.

circulators and a four-port circulator results in a six-port circulator

with the following unit-normalized scattering matrix:

0o 25

S =(6.25)

S, . Design rocedure and illustrative examples

The approach mentioned in [52] for designing a diplexer can be

* u:;tId for the design of a multiplexer. However in the present case,

11 the reciprocal two-port networks are bandpass filters and the

i:rcuit structure is more complicated than that of the diplexer.
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, G G21(3)(W) G (W G()(w) G2 IM)(a)

! .
-1 2')(W I(Ow P G1)2(

NFig. 6.5. An Equivalent Representation of Equation (6.13).

An equivalent representation of (6.13) is depicted in the block

diagram of Fig. 6.5, where the existence of the block Sli(i)(s),

i=1,2,... ,(N-1), causes the channel characteristics to deviate from

those of the corresponding two-port networks. As an example, we con-

- sider a four-channel multiplexer where the four reciprocal two-port

networks are Butterworth bandpass filters of order of 4. The plots of

IS 2M(i)(O) 2 , i=1,2,3,4, as a function of w are shown in Fig. 6.6
3 '

and the plots ofi (Jw)I 2 and Is (j) 2 are presented in121(4)(i) n 11(k)k=1 i-i (w1
,p4 Fig. 6.7. We notice that the value of fi IsI(k)(ju)12 is much

k=1

smaller than that of Is21(i) (jw)12 in the passband of channel i, so

chat in the passband of channel i the contributions of Isl1(k)(jw)1 2 ,

k - i is much smaller than that of IS2 1 (i)(jw)1
2. Since the attenuation

of the low-pass prototype filter yields an asymptotic slope of 6n dB/

octave for either the Butterworth or the Chebyshev response, the con-

tributions of ISI(k)(Ji)1 2 , k < i-I, may be ignored when channel k is

AA not adjacent to channel i. Equations (6.13) and (6.14) may be simplifid

to
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20

16,

S.-

dB

12- G2 1MCl)(w t) G21M( 2 )(w2 ) G2 1M( 3 )(w 2 ) G2 1M4 1( 2 ) -
;2/ / //

00

1.0 1.1 1.2 1.3 1.4

w (rod/s)
Fig. 6.6. The Plots of JS 21M(i)(ju)2 as a Function of w for

i=1,2,3,4.

"'V 21M(i) = S21(i) Sll(i-1) (6.26)

, 21M(i)(W2) Is S21(i) (jw)1 2  IS I1 (i-I ) ( j , ) 12  (6.27)

We illustrate the above procedure by the following numerical

examples:

Example 6.1. We wish to design a four-channel multiplexer having

4th-order Butterworth response. The 3-dB edge frequencies for the

channels are

4,, Channel I w 1.01, = 1.09;

Chennel 2 w 12 1.11, 22= 1.19;
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,"~~ I [sw(o (j-) I

dB G21(411w,)

12

00

1.0 1.1 1.2 3 4

w (rod/s)
3

Fig. 6.7. The Plots of Is21(4) and S11(k)()1 2 as a
function of w. k=1

Channel 3 w13 = 1.21, o2 3 
= 1.29;

Channel 4 w14 = 1.31, 024 = 1.39.

Suppose that we choose the canonical Butterworth networks to be the

two-ports. Following the above procedure, we obtain the circuit and

the element values shown in Fig. 6.8. The frequency response is

presented in Fig. 6.6. The losses at the edge frequencies are given
-7

by

'.i . 2 2
G 21Mt1Wl )11 = 3.01 dB, G2 1Ml)( W2 1 ) 3.01 dB;

G (02 = 3.197 dB, G 2 3.01 dB;21M(2) 11 21M(2) 22
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III
23.

000

%b'- N(4)
9.57 0.072 23.1 0 0303

.23.

" "" 0.072

+ No 9.57 0.085 23.1 0.036

223.1". " 0.40.,.5

N(2)

G21(3 3) = 3.192 dB, 22 = 3.01 dB.

22 3.

G21(4) 3.19 dB, G2 1 M( 4 ) 2 4 ) 3.01 B

The insertion losses at the crossover frequencies are about 11 dB.

1Example 6.2. Repeat the problem considered in Example 6.1 with

the 5th-order Butterworth response, using the canonical Butterworth

* two-port networks. The final circuit and all the element values are

shown in Fig. 6.9. The losses at the edge frequencies are given by

2 2
=', 2M1 m i) 3.01 dB, G2lIM(1)(U~)=30 B

G (2W 3.09 dB, 2 3.01 dB
21M(l) 12 G2 111(l)( 2 1)B

S(W 12) 3.01 dB;

G 21M(3) (2 = 3.09 dB, G21M( 3 )(2 ) = 3.01 dB;

G (W = 3.09 dB, GM(W23) = 3.01 dB;
21M(4) 14 =21M( 4 ) ( 2 4 )
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% o,02023 0o3164 0 0 21

0.7104 0.0773 0.25 -  0773

0.1829 0.7104C

N(4)
0.2023 0.3164 0.2023 0 3164

,... .0 .7 . o . . I

0.000.73 0.2

'5' + NoN(3 0.202i 0.34 0.2023 0.34

0

".N.., N(2)

... Fig. 6.9. A Four-Channel Multiplexer having Fifth-Order Butterworth Response.

The frequency response is presented in Fig. 6.10. The insertion losses

N at the crossover frequencies are about 13 dB.

6.5 Conclusion

In this section we presented a nonreciprocal multiplexer configuration

composed of an ideal multi-port circulator and a number of reciprocal

* lossless two-port networks, terminating in the source and loads. Having

~expressed the scattering parameters of the multiplexer in terms of those

of the component networks, we reduce the problem of designing a multiplexer

. Lo that of realizing the reciprocal two-port networks.

We also showed that a multi-port circulator can always be realized

a.- -is an interconnection of three-port circulators. Design procedure for

i nonreciprocal multiplexer and illustrative examples were given.
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16

- dB

12

G21M0)(w 2 ) G2 IM(2) ( 2 ) G2 1M( 3)(w2 ) G2 1M(4 )(w2 )

J,..

00
10, 1.O 1.2 1.3 14

ca (rod/s)

Fig. 6.10. The Frequency Response of a 5th-Order Butterworth
Four-Channel Multiplexer.

2..

';'2

S-'

O12



N

RSection 7

THE DESIGN OF A SYMMETRICAL DIPLEXER COMPOSED OF

CANONICAL BUTTERWORTH TWO-PORT NETWORKS

7.1 Introduction

Section 7 presents a new approach to the design of a diplexer

having given insertion loss at the crossover frequency. The diplexer

consists of a low-pass two-port network and a high-pass two-port

network connecting either in series or in parallel. Having expressed

the transducer power gain of the diplexer in terms of the Butterworth

polynomials, we show that the cut-off frequencies of the low-pass and

'-' high-pass networks must be symmetrical with respect to the crossover

frequency in order to obtain a diplexer with symmetrical characteristic.

The problem of designing a symmetricai diplexer is simplified to that

of choosing the order of the Butterworth response and the cut-off

frequency for the individual two-ports. A computer program DIPLX is

available for computing the circuit elements as well as the final

frequency response.

i1

i2

%'. 3I

Fig. 7.1(a). The Series Configuration of a Diplexer.
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InRE

2°

Q:, :
2#N

in:
a+

Fig. 7.1(b). The Parallel Configuration of a Diplexer.

•1

-? The design of a diplexer separating a frequency spectrum into

* two channels of signals is one of the basic problems in communications.

Figure 7.1 shows the most popular configuration of a diplexer composed

of a low-pass two-port network and a high-pass two-port network con-

nected either in series (Fig. 7.1a) or in parallel (Fig. 7.1b).

Because of the mutual interaction effect of the two two-ports,

the transducer power-gain characteristic of a diplexer is different

from the responses of the individual two-ports. The complexity of the

interaction effect makes the oesign ot a diplexer very complicated.

Early design of a contiguous low-pass and high-pass diplexer gives

only 3-dB insertion loss in each channel at the crossover frequency

[40]. To obtain a sharper separation, other design approaches have

been presented [37,42]. Recently Zhu and Chen [61] presented an

analytic approach to obtain a given insertion loss which may be

~,greater than 3-dB at the crossover frequency. The coefficients of

the driving-point impedances of both two-ports can be determined by

solving a number of nonlinear equations. Then the two-ports can be

realized by the traditional approach. However, this approach requires
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a sufficient knowledge in network theory, and the formulation and

solution of simultaneous algebraic equations.

In this section, we study the design of a diplexer composed of

two canonical Butterworth two-port networks having low-pass and high-

pass characteristics. The problem can be simplified to that of

choosing the order of the Butterworth response and determining the

cut-off frequencies of the Butterworth two-port networks. To simplify

our discussion, we assume that the characteristic of the diplexer is

symmetrical with respect to the crossover frequency. This means that

the order of the two-port networks must be the same. In paragraph
:5"

-'-" 7.2, the transducer power gains of the diplexer will be expressed in

.%terms of the Butterworth polynomials. To obtain a symmetrical charac-
0

teristic, the cut-off frequency w' of the low-pass two-port network
C

and that w" of the high-pass two-port network should be chosen sym-

metrically with respect to the crossover frequency. Illustrative

examples are presented in paragraph 7.3. Computer programs for

obtaining the final network configuration, its element values, and

- the frequency response curve of its transducer power gain are available.

7.2 Transducer powe-gin characterisiics of ; smmetrical diplexer

Consider a symmetrical diplexer formed by The connection of the

lossless reciprocal two-port networks having low-pass and high-pass

Butterworth characteristics. Assume that the low-p~ w-otN is

described by its unit-normalized scattering parameters S' j(s) (i,j =1,2)

and possesses the nth-ordk'r Butterworth transducer power-gain

characteristic

G,.(2) =.S n (7.1)
_." + /w,

g ,2C
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where w' is the 3-dB radian bandwidth or radian cut-off frequency,

and 0 < k' < 1.. Without loss of generality we assume I-' =1. Appealing

to the theorem on the uniqueness of analytic continuation of a complex

variable function gives [14]

2) = S -_ I_=__I (7.2)
( = 2(S)S12(-s) = l+ (-)nv2n q(y)q(-y)

where y = s/wI and q(s) is the Butterworth polynomial. Applying
C

the para-unitary property of the scattering matrix of a lossless

reciprocal two-port, which states that

n 2nSt- (-1) Y
(S)S=(-S - G'(-s 2 ) = ( - (7.3)

q(y)q(-y)

we find the minimum-phase reflection coefficient to be

n
S'l(s) = _(74)

q(y)

The impedance looking into the input port is given by [14]

I + S,(S)n
Z(S) - sI-s q(v) L_- (7.5)

I - Sjs) q(y) -+ ,n

the ± signs being determined in accordance with the circuit structures.

,V The choice of a plus sign in (7.4) corresponds to the circuit structure

shown in Fig. 7.2(b) which fits the diplexer of Fig. 7.1(b), and the

choice of a minus sign to the structurL- of Fig. 7.2(a) which suits the

" need of Fig. 7.1(a).

-" Assume that the high-pass two-port N is characterized by its
2

scattering parameters S'.'.(s) (i,j =1,2) and possesses the nth-order

Butterworth transducer power-gain characteristic
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,, (a)

(b)

Fig. 7.2. Two Low-Pass LC Ladders Terminated in a Resistor.

2 = Is 2 (j) 2  k"(w/W")
2n

Gel I s = 1 + ( 2n (7.6)

". -. where w" is the 3-dB cut-off frequency, 0 < k" < I and we again assume
C

k"= .

By appealing to the theorem on uniqueness of analytic continuation

of a complex variable function and the para-unitary property of the

scattering matrix, we obtain

G"(-s 2
= Se'2 (S)Sl2 (-s) 1 ( nz2n () 2n (7.7)12: 12 + (-)nz2 n  (7.7)-z

11 11q (z)q(-z)
G"(l(SS'(-)=1 - s ) q(-z)(7.8)
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ad I(

0 (b)

Fig. 7.3. Two High-Pass LC Ladders Terminated in a Resistor.

-

where z =s/w". The minimum-phase reflection coefficient is found
c

.to-be

S1% (S) (___
11 q(z)(79

p.. The impedance looking into the input port becomes

1 (S) -I -so 1 (7.10)

* - 2' 1- 1 (s) q(z) 1

The choice of a plus sign in (7.9) corresponds to the circuit structure

.hown in Fig. 7.3(b) which fits to the diplewer of Fig. 7.1(b), and the

6'.%

-,minus sign to the structure of Fig. 7.3(a) which suits the diplexer of

,-.".$ 1q(z

Fig. 7.1(a)

We now derive expressions relating the scattering parameters Sb e(s)

(i - =1 12,3) of the three-port diplxer shown in Fig. 7.1 in terms of
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f. the Butterworth polynomials q(y) and q(z), so that the parameters of

the individual .two-ports may be determined according to the given

specifications of the three-port diplexer at the crossover frequency

or in the passband or both. For simplicity, throughout the remainder

of this section, let the crossover frequency be 1.

In Fig. 7.1(a), the reflection coefficients Sii(s) (i=1,2,3)

normalized to the reference impedances 1, Zl(s) and Z2 (s) at the ports

11', 22' and 33' can be related to Zl(s) and Z2 (s) by [14]

Z (s) + Z2 (s) - (

S11 (s) = (7.11)
11 Zl(s) + Z2(s) + I

=-hi(s) Z2 (s) - Zl(-S) + I
s Z(S) Z2 (s) (7.12)

h2 (s) Zl(s) - Z2 (-s) + I

S33 (s) = h 2(-s) Z(S + Z2(s) + 1 (7.13)
33 h2 (-) Z I(s) + 2 (s)+

where

. h.(s)h.(-s) = [Z.(s) + Z.(-s)], i = 1,2 (7.14)

and the factorization is to be performed, so that hi(s) and h. (-s)
1 1

*are analytic in the open right-half of the s-plane. We recognize

that hi(s)/h.(-s) is a real regular all-pass function.
1 1

6-% . Since the diplexer is assumed to be lossless and reciprocal, its

i0," scattering matrix S(s) = [S.(s)] normalized to the strictly passive

impedances 1, Zl(s) and Z2 (s) is para-unitary, i.e. [14]

s(s)S'(-s) = s(-s)s, (s) = U. (7.15)

where the prime denotes the matrix transpose. As mentioned above,
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the circuit structures of the low-pass and high-pass two-ports in

Fig. 7.1(a) should be chosen as in Fig. 7.2(a) and Fig. 7.3(a),

respectively. Thus, we choose the minus sign both in (7.4) and (7.9),

and (7.5) and (7.10) become

'. Zl(S) -=g(y) _y

n (7.16)
1 n

q(y) + y

Z (S) q(z) + 1 (7.17)

From (7.11)-(7.17), we can ascertain S12 (s)S1 2 (-s), S1 3 (S)S1 3 (-s) and

S2 3 (s)S2 3 (-s) in terms of the Butterworth polynomials q(y) and q(z).

After factorization, we obtain

S s2[q(z) + 1]
12(S) e 1 2 (s) D(s)(7.18)

D(s)
Sl()= 013(s) 2zn[g(y) + yn] (.9

n
= 023(S) 2z (7.20)

23 ( s  3 D(s)

D(s) = 3q(y)q(z) + yn [q(z) - 11 + q(y) (7.21)

s - a

01(s) = fl - , Re a. > 0 (7.22)
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si

e 2 3 (s) = f Re k > 0 (7.24)

k +

are arbitrary real regular all-pass functions. The minimum-phase

solutions can be written as

S (s) = 2[q(z) + 11 (7.25)

S12  D(s)

2,13 s  = zn [q (y ( + yn ]

S 13 (s) = D(s) (7.26)

2z n
$23(s) = D(s) (7.27)

%The next problem is to choose the cut-off frequencies w' and w", so
C c

that the diplexer has the symmetrical characteristic with respect to

the crossover frequency. We assume that the low-pass and high-pass

two-port networks are of the same order. To this end, we substitute

s ia (7.26) by 1/s and appeal to

q(l/x) = x q(x) (7.28)

obtaining

, 2 (ws)-n [(a) s)-nq (w' s)+ (W's)-n]

/ )C c -. Cc

n 1in, )- s)S n ws-' .'. ~3(w's)-n(Wc)-q(w'cs)q(wcs ) + (w cs)n (s-q(wcs)-1]+ (s-q(wc s )

c c ''c' 9 ~ 0  c c c c

2(q(w's) + 1]= (7.29)

3q(w's)q(w"s) + (w"s) n fq(w s)-i] + q(w"s)

The symmetrical characteristic of the diplexer requires that
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$ 1 3 (1/s) = $12(s) (7.30)

on the real-frequency axis. Substituting y = s/w' and z = s/u" into
C C

(7.25) gives

2[q(s/w") + 11
% 12 ( C (7.31)

,-. 3q(s/j')q (s/w c ) + (S/w')n[q(S/w")-Il]+q(s/wc )

C C C c

By comparing (7.29) and (7.31), it is straightforward to confirm that

if the cut-off frequencies of low-pass and high-pass two-port networks

are related by

w'" =1 (7.32)

c c

equation (7.30) will be satisfied and the diplexer is symmetrical.

We conclude from the above discussion that the problem in

designing a symmetrical diplexer composed by a pair of low-pass and

high-pass Butterworth two-port networks is equivalent to that of

choosing the order n for both two-ports and their cut-off frequencies

..it and w" which are related by (7.32). Its transducer power-gain
c c

characteristic IS12 (jw)I are plotted in Figs. 7.4 through 7.6 as a

function of w for various values of n and (w'.
C

Computer programs for solving the nonlinear equation (7.25) is

available. The outputs are the circuit element values and the

frequency response of the transducer power-gain characteristic.

Because of the complexity of interaction effect between the two-port

networks, checking the frequency response is necessary.

.J. 7.3 Illustrative examples

Examples illustrating the above approach are listed in Table 7.1.

The first two examples are from Zhu and Chen's paper [61]. The final

circuits and the transducer power-gain characteristics are shown in

Figs. 7.7 through 7.12. The programs were run on the IBM 3801 system.
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TABLE 7.1

Summary of Performance of Various Designed Symmetrical Diplexers.

Final Results

Insertion loss Order

at w = 1 n 3dB Execution Circuit and
C time response curves

i 6.9 dB 3 0.71629 0.83 0.1 Fig. 7.7(a)(b)

2 12.75 dB 3 0.57852 0.62 0.07 Fig. 7.8(a)(b)

3 20 dB 3 0.44577 0.46 0.08 Fig. 7.9(a)(b)

4 20 dB 4 0.52471 0.52 0.09 Fig. 7.10(a)(b)

5 20 dB 5 0.56418 0.53 0.1 Fig. 7.11(a)(b)

6 40 dB 5 0.37882 0.37 0.09 Fig. 7.12(a)(b)

" ~~~ ~~80 I I I n

N=3

60. C

A 0.2
B 0.3

I.'C 0.4

D 0.5
-E 0.6

-40-

-o5

0A

0
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200

0 0.4 0.8 1.2 14 2.0

%~w (rod/s)

Fig. 7.4. The Third-Order Diplexer Transducer Power-Gain

Characteristics.
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Fig. 7.7(a). A Third-Order Series.Connected Diplexer Having
6.9-dB Insertion Loss at w = 1 rad/s.
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Fig. 7.7(b). The Frequency Response of the IDiplexer of Fig. 7.7(a).
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Fig. 7.8(a). A Third-Order Parallel-Connected Diplexer Having

12.75-dB Insertion Loss at w = 1 rad/s.

log I S121

• I0-

* 201og jS 1

5.

.140

...

-4., 
20tog IS13 l

r-~ 00.0 81.l'62

o) frOd/s)

Fi.78b. TeFeuec epneo h ipcc fFg .()

*J 4.



0.4458 H 0.4458H In

Fig. 7.9(a). A Third-Order Series-Connected Diplexer Having
20-dB Insertion Loss at w = 1 rad/s.

4 40

30-

2O1og IS12 1

dB

.4 20.

I 2O1ag IS 131

'.04

0
0 0.4 0.8 1.2 1.6 2.0

w (rod/s)

Fig. 7.9(b). The Frequency Response of the Diplexer of Fig. 7.9(a).
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20-dB Insertion Loss at w = 1 rad/s.
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Fig 7.11(a). A Fifth-Order Series-Connected Diplexer Having
20-dB Insertion Loss at w = 1 rad/s.
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Fig. 7.12(a). A Fifth-Order Series-Connected Diplexer Having
40-dB Insertion Loss at w = 1 rad/s.
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"- 1.4 Conclusion

Because of the mutual interaction effect between the two-port

nctworks, the design of a diplexer in general is very complicated.

Nhc diplexer presented in this section possesses the symmetrical

frequency responses for the channels with respect to the crossover

frequency, and can be obtained by connecting the two canonical

Butterworth two-port networks either in series or in parallel.

Having succeeded in expressing the transducer power gain of the

diplexer in terms of Butterworth polynomials, the problem of designing

:i diplexer reduces to that of choosing the order of the Butterworth

response, and the cut-off frequencies of the individual two-port

* ncworks. A computer program DIPLX is available that gives the

Si.r equired results as well as the frequency response of the transducer

% power-gain characteristic.

a,.
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% _e

Si'~ ~ - J



Section 8

ON THE DESIGN OF A DIPLEXER HAVING

BUTTERWORTH CHARACTERISTICS

8.1 Introduction

A direct and analytic method is presented for the design of a

diplexer having the maximally-flat characteristic at zero and infinite

frequencies with any desired insertion loss at the crossover frequency.

We first extend Carlin's theorem on reflection coefficients to n-port

sCattering matrix. We then construct the scattering matrix of a

diplexer normalized to the 1-ohm resistance at the three ports, the

elements of which are expressed in terms of the numerator and denomina-

tor polynomials of input impedances of the two-port filters. If the

transmission coefficients possess the nth-order and mth-order Butterworth

responses, where 2n > m and 2m > n, a set of algebraic equations of

second order can be obtained. An iterative procedure for their solution

is proposed, thereby making the design of a diplexer having Butterworth

responses by direct and analytic method possible. Two illustrative

examples are given.

The design of a diplexer, which separates frequencies in certain

rmges from a spectrum of signals, is a problem frequently encountered

O ' in communication engineering. The separation of the desired frequencyH ,tnds can be accomplished by using filters connected either in parallel

tr in series. However, the design problem is much more complicated

tL n it might at first seem, because by simply connecting two ordinary

,iters, interaction effects will certainly disrupt the performance of

t r! system. Early design of the constant-impedance filter pair gives

S l 3-dB insertion loss in each channel at the crossover frequency [40].

I urder to obtain a sharper sepa,,ition, mo:t of the practical designs

01
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- use the complementary techniques to modify the individual filters in

the common port [37], or in the filters themselves [42].

The analytic technique for the design of a diplexer is of great

importance, because the desired response can be directly obtained by

using a minimum number of elements. As is well known, if the diplexer

is lossless and reciprocal, its 3x3 scattering matrix is para-unitary

I',. [59,14].

Belevitch [1) first presented a method for the synthesis of a

nonconstant-impedance filter pair. Neirynck and Carlin [38] gave a

general solution to the construction of a scattering matrix of a

three-port network, a practical example of which can be found in

* Carlin [3].

In the present section, a more direct method to constuct the

scattering matrix of a diplexer consisting of a filter pair connected

either in parallel or in series is given. The result can be considered

. as a special case of [38], but the expression of the scattering para-

"- . meters in terms of the numerator and denominator polynomials of the

input impedances of the filter pair is more meaningful and is much

simplified. We first extend Carlin's theorem [5] on reflection coef-

ficients to n-port scattering matrix and then apply the result to the

* ,sign of a diplexer.

Another key problem is to determine these polynomials so that the

.r )nsmission coefficients S12(s), S13(s ) and S 2 3 (s) yield the desired

. ._;ponsus. By requiring S 1 2 (s ) and S13(s) possess the nth-order and

mth-order maximally-flat response at zero and infinite frequencies,

.. spvctively, we obtain a set of nonlinear second-order equations.

-ihis solution process may be regarded as an optimization procedure and

tc-quivalent to determining Lhe exact locations of the complex zeros
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of transmission. These equations greatly constrict the search range

and can be solved by Newton iterative method [411, the initial value

of which can be chosen in accordance with that suggested in paragraph

8.4. The resulting solution is guaranteed to be convergent.

8.2 The scattering matrix of a diplexer

Let us consider a three-port ideal transformer with unit turns

ratios and terminated in zl(s), z2 (s) and z 3 (s) at port 11', 22' and

33' as shown in Fig. 8.1, where zl(s), z2 (s) and z3 (s) are non-Foster

1I 7:1 j 2

1 2

I J z2(s)
,' zlls) I 2

52P

". I 1:1 &

II Z3(5)

Fig. 8.1. An Ideal Transformer Terminated in zI(s), z2 (s) and

z3 (s) at port 11', 22' and 33', respectively.

positive-real impedances. When z(s) = 1, and z2 (s) and z3 (s) are

6., expressed by their Darlington equivalents, the ideal transformer and

the two lossless reciprocal two-port networks constitute the diplexer

as shown in Fig. 8.2.

In Fig. 8.1, we define

ri(s) = [zi (s) + zi (s)] = hi(s)h i(s), i = 1,2,3 (8.1)

148
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N 2

lossless and I n
I. n . reciprocal

Z2

Jl ossless and

reciprocal [

Fig. 8.2. The Ideal Transformer and Two Lossless Reciprocal Two-Port
-, ~ Networks N and N Constitute the Diplexer.

2 3

where

z. (s) = z.(-s) (8.2)

and the factorization is to be performed, so that h.(s) and h. (s) are

analytic in the open right-half of the s-plane (RHS). Let §(s) be the

scattering matrix of the three-port ideal transformer normalized to

Z I (S), z2 (s) and z3 (s). Then we have [14]

h z2+z3-zl 2hlh 2hlh
1 2 3 112 1 3

h* z +z2+z3 z +z 2 +Z3 z I+Z 3

2h h h z+ 2
1 2 2 Z+Z 3 Z2  -2h23

' z+z+Z h +z+2Z (8.3)

7A. 2hlh -2h h h z +z2-Z
1 3 2 3 3 1 2 3*

1Z2+3 2+z+z 3, 11 Z+Z2+Z 3
1+Z+Z3 2 2 3 3* 1 2 3

If zl(S) = 1 2 and if the impedances z..(s) and z3 (s) are written

explicitly as
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, P ( s )

z (s) - 2s) (8.4)

2  q 2(s)

z3(s) P3(s) (8.5)
3( q 3(s)

then we can state the following:

i) Pi(s) and qi(s) (i=2,3) are polynomials with real

coefficients.

(ii) pi(s) + qi(s) is strictly Hurwitz.

(iii) pi(s)q I(s) + pi (s)qi(s) is not identically zero.

(iv) pi(jw)qi,(iW) + pi (jw)qi(jrw) > 0 for all w.

Since the matrix of (8.3) is the scattering matrix of the three-

port ideal transformer normalizing to three non-Foster positive-real

impedances, it is necessary that the matrix be rational and bounded-

real and possess the para-unitary property. Write

Wi(s)Wi (s) = [pi(s)qi,(s) + p.,(s)qi(s)], i =2,3 (8.6)
1 i* i

The zeros of the polynomial W.(s) are restricted to the left-half of1

the s-plane (LHS), while the zeros of the polynomial Wi (s) are

limited to RHS. The zeros on the imaginary axis are equally divided

between W i(s) and W. (s). Thus substituting (8.4), (8.5) and (8.6)

with z1 (s) = I in (8.3) gives

P2 q 3 + p 3q 2- q 2 q 3 W 2* 2W 2 q 3  W 3 , 2W 3 q 2

2q3+3 2 2q3 2 P2q3+P3q2+q23 W3  P2q3+P3q2+q2q3

W 2W"q3 q tq W W -2W2W

2* 2_ 3  W2* P3q2k 3q 2-q3P2,  2*3* 232 p2 ,q2+ W 2  P2 q3 +P3q2+lq2 q 3 W 2W 3  P q+2 q +3

4 '1 P 2 q W W WW W q P+

4 ~ ~ 3,. 2q2 W2,W3, .... W3_. P2q3*-q2P3*+ 2 3*

3. p2q 3+ p3q2+q q 3  WW P2 3+P3 2+ 3 W3 P2q3+P3 2+ 3

•, 150
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*I "1 I
N I I

I I I

II I *I I
Slosilesm nre ipro I II ~n-portII"I I

network

I Zk II I 1 1 * . I
-0~II I I I

I I -z n  -N IN in
,i I I I
' I I I I

No  L

Fig. 8.3. An n-Port Network Terminated in n Non-Foster Positive-Real Impedances.

We next present a theorem which extends Carlin's result [5] to an

n-port network.

Theorem 8.1. Let S(s) = [SI ] be the scattering matrix of a losslebs

reciprocal n-port network N of Fig. 8.3 normalized to n non-Foster positive-

real impedances zk(s) (k = 1,2.... n). Then the unit normalized scattering

matrix of the augmented n-port network N of Fig. 8.3 is given by
a

+-W-IsW 2 W W n

WI i WI 2  12 1 WIn

W1 12_1*n

S(s) = s 2 ... W n 2  (8.8)
22* 2* n*/

W W W 2

* 111* 2* n*

1V* 1

* ~~w .,.' I'JhMSp, - '



where

zkis Pk(S)_

Zk(s ) - qk(s) k = 1,2,...,n (8.9)

kk q)Wks)

Sk(S)Wk,(S ) = [Pk* (s)qk(s) + Pk(s)qk, (S)], k= 1,2,..... n (8.10)

and the factorization of Wk (s) is to be performed the same as that

4. of (8.6).

The proof of the theorem follows paragraph 8.5, Conclusions.

Letting n=3 in (8.8) and substituting the elements of (8.7) in

(8.8) yield the unit normalized scattering matrix of the diplexer of

Fig. 8.2 as

pq + q2  q (W 2 \ 2Wq -2w3~ 2W q2P2q3+P3q2+ 2q 3  W2  p 2q3+P3q2+q2q3  W3  p 2 q3 +p3 q2 +q 2q 3

-Ss) = W2 q 3  3 2* 3q2*- 3 2*
2 P 2 q 3 +P 3 q2 3 2q3 3 2 +q22q 3 W p 2 qB+P3q 2 +q 2 q 3

(_ W3*) 2W3q2 W2*W3 )2 -2Wp2qW3 P2 q3*-q 2 P3 *+q 2 q 3 *
iW 3 ] P2q3P 2+q2q3 72W 3  P2q 3+ 32+q2q - 3~q+p3q2+(12q3

~(8.11)

From (8.11), we arrive at the following conclusion:

1. S(s) is rational and bounded-real and possesses the para-unitary

property for the lossless, reciprocal, linear and lumped diplexer, so that

% %the polynomial p2 q3 +p3 q2 +q2 q3 is strictly Hurwitz.
..

*- > 2. (+W /W kis a compiete square. When all zeros of WW are on

S k) k k k* aeo

the jw-axis, ±Wk/W " ) = ±= . When the minus sign inside the brackets

is used, a minus is assigned to Skk (s).
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3. By assumption, pk/qk is non-Foster and positive-real.

8.3 Butterworth response

By a diplexer having Butterworth response we mean that its trans-

ducer power-gain characteristics, say ISl2 (Jtw)L2 and ISi3(Jw) 2, possess

the maximally-flat amplitude-frequency characteristics at the zero and

infinite frequencies. Consider the transmission coefficients Si2 (s)

and S13(s ) of (8.11). Without loss of generality, from (8.10) Wk(s)

and W (s) can be expressed as

Wk(s) = [S T (s 2 + W2) P [s +a )2 + b 2]2 (8.12a)

k*i

Swhere w., a. and b. are all real and positive; and T, i and j are non-

-negative integers. If the filter networks of Fig. 8.2 are LC-R ladders,

it is necessary that all the zeros of Wk(s) be on imaginary axis [29].

In this case

Wk(s) = sT 1( s 2 +Wi ) (8.13)
i 2

* Since S2 (s) and S13 (s) provide the maximally-flat characteristics and

are devoid of zeros on the finite real-frequency axis, and since the

finite zeros of Wk(s) cannot be cancelled by the ones in the strictly

Hurwitz polynomial p2q3+p3q2 +q2 q2, W2 (s) and W3 (s) can be written as

* W2 (s) = 1 (8.14)

W3 (s) = s (8.15)

The corresponding realizations are termed as the all-pole networks and

their configurations are shuwn in 1Fig. 8.4a, from which z,2(s) and z 3 (s)

can be expressed as

t53
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n od

2 T C

n even nmodd

(a)
Fig. 8.4(a). A Diplexer Composed of Two Ladder Connected in Series.

cn

n even n odd

3.

m even mn odd

Fig. 8.4(b). A Diplexer Composed of TIwo Ladder Connected in Parallel.

p2 (s) c n I- + Cn fln2 + . l

4.z z(s) - - _n2(8.16)
2 q2s n + nn-I + Il

m rn-I
p3 (s) s + dnmis + + (8.17

z (s) = -rn-i7
q 3 (s) s + a-s + ... + a3is + 0

The dual expressions in tcin', of tLh input admnittane vf(' v(s) and \(s)

for the circuit of Pig. 8.4b can b( written as

15!
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n-i n-2
c 

s  + c s + + cs + I

v (S )  = (8.18)
"n n- Ias + a s + ... c+ I1s + 1

m m-1s +d diS +... +dis
rni (8.19)

Y 3
"s " = m rn mr-i

s + m-1S s + + 0

Figure 8.4 shows that there are n+m element values to be determined,

but there are 2m+2n-2 unknown coefficients in (8.16) and (8.17), or

in (8.18) and (8.19). The re+n-2 constraints are obtained from (8.6),

(8.14), (8.15), (8.16) and (8.17) with T =m in (8.15), as follows:

* k 1 =x

E (-1)iiCk i = 0, x = 2, 4, .... 2(n-1) (8.20)

i=0

k2 =y

* (-i)J jd k2_ j = 0, y = 2, 4, .... 2(m-l) (8.21)
j =02

where a= c O = 1; a. = 0 for i > n; Ck-i - 0 for k -1 > n; and

Om = m = 1; d0 = 0, 6. = 0 for j > m; and dk2_j = 0 for k2 -j > m.

The additional flexibility in terms of the excessive n+m unknown

coefficients can be used to require that the transmission coefficients

possess the desired response. This is equivalent to assigning n zeros

of q2 (s) and m zeros of q3 (s) anywhece in the open LHS, so that S1 2 (s)

and Sl3 (s) give the maximally-flat response at zero and infinity fre-

quencies. Substituting (8. 14) and (8.15) with t=m in (8.11) gives

2q 3

12 (  p) 3+P q2+qq (8.22)

S ) .. .. .... (8.23)13 P q 3+p 3q 2+q2q 3

%1 5



A

m

23( p) q 3 +p 3 q 2 +q 2 q 3  (8.24)

- By combining (8.16), (8. 17) and (8.22), we obLain

9 2m

IS12 (jw)1 - __
2

_ __Is9 2m 2 (m+n) (8.25)
A0 + A IoW + ... + A m w 2m + +A co
0 1 m m f+n

where

S' 9 2m,

B + B + ... + B w = 4 q3(j3)q. (J) (8.2F6)
0 3 i3 3*

A +A +2 2m++.+ A 2 (m+n)
(i 0 q Almj- + q + A

0* = [P2 (i)q 3 (jw) + P 3 (jcaq2(je) + q 2 (J)q 3 (j a) 1

-'. (p2,(jw)q3(jw) + p3,(jw.)q2,(jw) + q (jwj)q3(jw)] (8.27)
[2 3*, 3* 2* 3*

if B. = A., i = 0, 1, ..., k; k < m, then (8.25) can be written as

S2(k+l) 2(k+2) 2mB k+I + B w + ... + B m
2 + 0 Bk+2 k

A 2(k+ ) 2(k+2) + + A 2m+n (m+n) (8.28)12k - " + Ak+2 +... + w

B0 + B I2 B  k

, As w approaches zero, (8.28) can be approximated by

+ 2(k+l) (W2

1 S";12( W) l  - 2(k +l -1 2 "+  2 (B + B''. + . (8.29)'12+ (±1 fl )~~
L + ' fI (W)

where fl(t) and p(,j, )aire polynomials in I.. in this case, s12(Jw) 2

is said to possess the (k+l)th-ordt-t maximally-flat response at the zero
trequency. likewisc, .S1  2.. ,2 l C ('pr -S d a

kw1 3( can he expressed as

13(
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2m 2 (m+l) 2 (re+n)""'" C + C: + . . + "C' -

is (jw) 2  m 2: (8.30)"""I 13 A 0  + At LJ  + " "+ ;\  + . .+ A M , ) O- n

P1 m+n

where

-n 2 (m+l ) 2 (rn+I) 2m
Cm2m + C + 1 ) ' + C 2 - 4 w q 2 (iw)q 2,(jw) (8.31)m -n+ 1 2~

If C. = A., i =m+n, in+n-l, ... , r+n-h, h < n, then we have

C +i1 + +m+n-h _1 2 o(h++) (re+n-h-2 2(h+2) + " 2mnh-1 (+1m 2n
+ -- W W

1 1Cm+n +Cm+n- 1 2 +C+n-h 2h

IS
13 A 1 + (8.32)

Am+n-h-1 2(h+1) + m+n-h-2 2(h+2) + 0 2(m+n)
+ 1 In - h2 1
+~SC + ... + + +Cr-m+n m+n1-I 2 "" m+n-h 2h

As approaches infinity, (8.32) cm be exprcssed as

1 -1- 1__ _ _ *10
2 2(h+l) 2 " ,

Is 1(i K f / 2 ! + I 0 + C1  + ... ] (8.33)
+ (h+1) (

where 2(1/w) and f 2 (I/wo2) are polvnomi;als in l/w 2 and 1S 1 3 (jw)12 is said

to possess the (h+I)th-order l'utterwnrth response at the infinite fre-

quency.

Theorem 8.2. Of thL d ip1 cxer 'orI igurat ion of Fig. 8. 4 , suppose

that Lle transmission coofti iL nts (',an be expressed as in (8.22), (8.23)

and (8.24). Rcwrit the rut ion .:mo'ficient S1 (s) according to

that given in (8. 11) as

m+n m-+ 1 -h I kh a + . . . +i-h bn_} 4 ... + Is 4- ... + bhs + ... + hls+ b0
*m-, m+n(s -. 1.0 (8.34):

, a s ±a . + a s+ a
,+n 0T,

%0'%N
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where

p q 3 +p 3 q -q -q 3 = bmS+n + ++ i++ in + +

SkS +. + 1)hS + b 0  (8.35)

k 1 0

3. m+n +n- 11
p~q3 +p 3 qq+q.q3 a+ + am1 ~IinS + .. + alS + a 0 (8. 36)

,

J. Then the following are true:

1) If b. =0, i = 0, I, 2, ... , k; k m, then Sl 2 (jw) 2 possesses
11

(k+l) th-order maximally-flat response at the zero frequency.

2) If b. =0, j = m+n, m n-I .... ., e+n-h, h : n, then IS 1  (j,)12

"% possesses (h+l) th-order maxima]lv--flat response at the infinite0
frequency.

3) If b. =0, i = 0 , I , k, m+n, m+n-I m+n-h; k < m, h < n;

then the diplexer posseses (k+l)tli-order maximally-flat response

at the zero frequency and (h+l)th-order maximallv-flat response at

ithe infinite frequency sin inl taneous I v

4) Be Ievi tc )as shown in n unpub i ished note that 2m n and 2n m

for obtain ing the non-de, gene rit so11t ion.

Pr)of: From (8. 34) uLp :-1 (,"4 E and from (8.22) and (8.23)

compute i2 al 1 3( ' thos;e functions about

the zero freque, ncy givex

(0) (0) (0) 2k
.11 ) 10 ± 1 + ... + T , + .8.37)

1k +" (8.38)

2(  (H) 2 m 0 v O l It~K." . '+I + (8.39)

K I ll ( } ) .. V4. 'i, t ilI l .k IiVe
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(0 )  
= , i = 0, 1, ... k; k < m (8.40)

By the para-unitarv pr perty ) ( Il), we have

Li 12 )- + 813(1. 2 s 1 (8.41)

Combinin4 (8. 37)-(8. 40), with (8.41) gives

.*% i2 = + 1.0) 2(k+l) + u(O) 2(k+2) + (8.42)
)k+l k+2'

yielding a diplexer pos ss.,ssim (k+l)th-order maximally-flat response

at the zero frequencv.

Expanding aSnS(j.) 2 2(1.) 2nd S(jw) 2 about the infinite

Irequency results in

-- + + -F + .. . (8.43)0 (j1) 2 1 2h

s A - + U ... (8.44)
1n 2n +  n+I 2(n+l)

SW )  2 + + ... (8.45)'13 - 0 1 2 h 2 h

If b. 0 in (8.34), = m+, r-'n-l, ... , m+n-h; h < n, we obtain

,(,)

T. = 0, 0, 1, ... , h, h in (8.46)

O (,mbinina (8. '3)-(8.46), with (8.41) iv('s

-V.,-" (')v j
"""'1 V+1 h+2

+1" + 2 h. + . . . + (8.47)32 (h1+-1 2 (h+2)

O..~

. ."I t I r_,: '1 , -. , , n (hi+ )th-ordcr aximal Iy-f lat

-i i F 0, ( ', , i (8. ... -I (.47 r, s, lt, , In a. .(Iipt -h,,'<

O(.



possessing the (k+ l)th-Lrder m:axima I Iv-f Lit response at the zero fre-

quency and the hir . i ,.iyllv-flat response at the infinite

frequency s inn [ tneons I.

.. Finallv, in order to obtain a non-degenerate solution, the

restriction on respective degrees of the filter, 2m n and 2n > m

as given by Belevitch, has to be satisfied.

Corollary 8.1. In Theorem 8.2, if b =0 for i = 0, 1, ... m+n,

then the diplexer possesses the pth-order Butterworth response both

at the zero frequency and the infinite frequency, where p = min (m, n).

In this case, the dipiexer degenerates into a constant-impedance

N" filter pair.

Proof: In Theorem 8.2, if b. =0 for i = 0, 1, .... rm+n, then
A1

P2 (s)q 3 (s) + p 3 (s)q 2 (s) - q2 (s) s) = 0 (8.48)

z 2 (s) + z 3 (s) 1 1 (8.49)

Let p(s)/q(s) be the imp(-danue of z(s), being either z 2 (s) or z 3 (s) of
-. 2 3

order p, then we have

S (S) 0 (8.50)

hI' -q- (-) (8.51)

S 1 3 (s) (8.52)
(I(s)

Fr-,:r (8.48)-(8. 32), ,* ,!)t'i, t, he f(, I Iowing:

, ") q (s ) is t ,t -,, r d hel tt'rworth polynomnial.

S2) Write*I- ... a~

,,"- . + +±

+% .
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.1'. s p p - I d ,)s p-2 .. + d2s2 +..... d.... (d _. ... dd(8.54)

s + ...1 + (ls +

-% -then

4.c + d = i = 1, 2 P-I (8.55)
1 1 1

3) From (8.20), (8.2t), (8.53)-(8.55), we obtain

444 (s) =z 3(1/s) (8.56)

Using these properties, a constant resistance diplexer possessing the

Butterworth response of any order can easily be designed. For example,

let p =6. We obtain

0.64395s 5 2.4883 4  3 + 4 .9 7 60 7 s2 + 3.21975s

z2(S) = 6s(8.57)
2 6 5 4 3 2s + 3.86370s5+ 7.46410s4+ 9.14162s +7.46410s2+ 3.S6370s+ I

6 53432

s 6+ 3.21975s5 4 4.97607s4 +4.57081s 3+2.48803s2 +0.64395s (8.58)
z 2 (s) 65 4 3 2

s +3.86370s + 7.46410s4 +9.14 L62s + 7. 46410s + 3. 86370s + I

from which the dip]exer u€inbe syn tliesized.

8.4 Illustiratyvc ex-lmprnly

Newton Iteration Method

0 In paragraph 8.3, we can obta in M+n-2 equations from (8. 20) and

(8.21) and ni+n-2 equations From I li, rei, 8.2 for the 2m+2n-2 unknown

". coefficients. Tin ,iir TW,, t f 1-itiiti t, be used to determine the

crossover f requent v ind l ha I s ;it hat L req Htency, where 2m > n and
.

2n , m. Wt r tia, thAt a I it Lit joll: - irc of second order and can

h) Ui () I ve b tin I wt ,,' t i L i ( ,i til,d ,1 th, improved Newton's

' methd F' . li,, II Ili, r :;,i I i t cup l) 2 (S)/q)(s) and p 3 (s)/q 3 (s)

2 3s

% N N N
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positive-real, so that the matrix of (8.11) is bounded-real and possesses

the para-unitary property. Write

= I T T I T (8.59)

where

= [an' On -1 ..... 2, ]T (8.60)

1[c1 , C- 2 9 -9 c2' c 1] (8.61)

T[=mnI, 'in_2' ... BI, 0 (8.62)

[d d .. d d 1  (8.63)

*and express

' " T

-f2= [f' 2 " 2m+2n-4' f2m+2n-3' f2m+2n-2T (8.64)

where

2
.. = E (-) 0 (8.65a)

i=O

2(n-1)

f n- = (-1) IiC2 (n-1)-i = 0 (8.65b)~i=0

2

f 2(-l) .d =0 (8.65c)
n0 j 2-jJ =0

2 (m-1)

fr+n-2 = = (-1)J % d2(m-i)-J = 0 (8.65d)
j=0

f m+n-2+k= b = (, k 1, ... , m-M, m+, .... m+n-1 (8.65e)

0 (8.65f)
2m+2;i-3 3 = 00 () 2 _ ,s 3 j 1



, 1m+21_2  =12 2 - mi, = 0 (8.65g)

xhere x is the desired loss in db at w = I rad/s. Let x k be the

S'p kth-iteracti oil. 1The"1

-1-= - [(k 1  r(Xk) (8.66)

where

aI (xk) 2 )(- k 2(m+n-2) -k

atf (x ) 2- t(x)I. -k - k  (m+n -2) (-kk_ . (8.67)
S 2  x2  ax 2

S1k k 3f2 2 (m+n-2) (-k)
x2 (+1- 3 2 (e+n- ) Jx2 (re+n- I

In (8.65) s.me x of the (2m+2n-2)-dimensional vector x can be

simply expresscd in terms ol the others, and this can be used to

reduce the dimension of the problem or make the selection of the

,i iit Lial value 0 easier. But a careful choice is still important,

without wihicil the p rIc,.d m t mv not c)nverge and tle design may fail.

0_ "lIhst ho icc of I nitial k ,ll~l (

. 'Consider the diplexer Iven I Fig. 8.2. We notice that one

filter i.-.i iii tl p.s d. .'c i I, ti!(. (itherF is in the stopband for

most of the 1.:-;,xi q f, , ' -. It> is a I ow-pass structure and

N. a ; gI - , ,:s t r(Lir,. .tw i i I i n h( h put impedance oI one filter is-5

is n I ,iri, w ]vi] I. ft , , pr( - , ta ;I I scrie . reactance and

r- : ,M"Il I t.r r L- , t . . 1 111 i' I i pell pes i 1Id (" t'. Of the

oJB



two Butterworth filters with normalization frequencies w I and w 2 ,

where w I < I and -2 > 1, respectively, as our initial value x0 * When

a sNymmetric response characteristic about s j is considered, we can
?-

use (8.56) and let w2 = I/wI. For example, the input impedance of a

6th-order Butterworth lowpass filter is given by

3 .8 6 3 7 0 (s + 7 . 4 6 4 10 (s + 9 .141 6 2  s )+ 7 .4 64 10 ( + 3. 8 6 3 7 0(k)+ Izi (S) (W 0 W )
. z(s) = 65 4 3 2

Is\) fs\) s
2 s + 3 8 6 3 7 0 ~ )@ + 7 4 6 4 1 0 ks +9.14162 s +7.46410( ) +3.86370

(8.68)

Let w = 0.5. Then

Z(S) 123.6384s 5+ 119.4256s 4+ 73.13296s 3+ 29.85864s 2+ 7.7274s+ 1 (8.69)

128s 6 + 123.6384s 5 + 119.4256s 4 + 73.13296s 3 + 29.85864s2 + 7.727s+ I

The following sets of coefficients

128.0 123.6384

123.6384 119.4256

119.4256 73.13296

a = , c = (8.70)
73 13296 29.85864

29.8586] 7.7274

7.7274

can be used as the initial value x0 of the iterative process for the

6th-order svmmetrical diplexer with 3-dB bandwidth approximatelv at

0.5 and 2, respectively, where z 2 (s) = z 3 (I/s). When the 3-dB band-

(width iS (-lose to 1, the value of ;, constant- impedalnce filter pair is

given in (8.57) and (8.58) an be chosen is xO -

N%
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Numerical Examples

Example 8.1. We wish to design a diplexer having the 2nd-order

maximally-fiat response at the zero frequency and the 3rd-order

response at the infinite frequency.

Let n=3 and m=2. Then

- 1.029768s 2 + 1.454091s + 1 (8.71)' z 2 (s) 3 ( .21

2" 1.53622s 3 + 2.16923s2 + 2.2s + I

zs(S) - s 2 + 0.670326s (8.72)
3 s + 1.340652s + 0.898673

ON.

from which we compute the transmission coefficients

02
s + 1.340652s+0.898673

1.53622s 5 + 4.228766s4 +6.488742s 3 +6.1242174s 2 + 3.3177315s+0.898673

.1-53622s 5 + 2.16923s4 + 2.2s 3 + s (874)
1.53622s 5 + 4.228766s 4 + 6.488742s 3 + 6.1242174s 2 + 3.3177315s+0.898673

The resulting diplexer is shown in Fig. 8.5 and its amplitude-frequency

response is plotted in Fig. 8.6.

Example 8.2. We wish to design a diplexer possessing the 6th-order

symmetrical Butterworth response with 3-dB bandwidth close to 0.5 and 2,

respectively.

Write

U. 5 4 3S3 c2s2

z 2S = (8. 75)
z2 (s) = 6 a5 4 3.... -2 s...+8.5

Cc a6s +5 +( 4 s +c3s + a2s + c +S+
• a~s + +d 4 s +d s+d 2s +dl+

U z3 (s) = 6 2 (8.76)
s +d ds+~s ds+l

3 S6 + 5 s5 + B4 s4 + 3 S3+ 2 s 2+ lS +

t65

S%
'a



1.4541 H

1.4918 F 0.7082 F 1

In,,, 1.4918 F

'. 0.7459 H a q

Fig. 8.5. A Diplexer Possessing the 3rd-Order Butterworth
Response at the Infinite Frequency and the 2nd-Order
Butterworth Response at the Zero Frequency with a

3-dB Insertion Loss at w = 1 rad/s.

-/ -60-

10 log IS12(jw)l 2

-40-

dB 10 log IS13 (jw)l 2

-20-

.,

0
01 02 0304 OG 1 2 3 4 5 6 78 10

Fig. 8.6. The Frequency-Response Curve of the Diplexer Given in Fig. 8.3.
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where m=n=6. Let the crossover frequency be s=j. For the symmetrical

Butterworth response, we require

z2 (s) = z 3 (1/s) (8.77)

and

s65+c s5 +c c5 s +c s
3 +c s2 +c5 s

z3 (s) s6 + Cs + 2s + 3s3 + 4s + 5s (8.78)
3 s + aI s5 +a2s4 + 3 +a4s2+a5s+a6

The initial approximation is shown in (8.70) and using (8.66) we obtain

a 6 = 132.9572

a = 145.8101 c5 = 76.699818

* a4 = 125.868 C4 = 84.114347

(8.79)
a3 = 73.9661 C3 = 56.86165

a2 = 29.856355 c2 = 25.398604

aI = 7.7274 cl = 7.150524

The resulting network and its response are shown in Fig. 8.7 and

Fig. 8.8, respectively. The transmission coefficients are found to be

2.8095H 3.4296H 0.9114 H

J. .

'"1.7335F 3.4982 F 2.4966 F 1

•T T T
0 3559F 0.2916F 1.0972 F

0.5769H 0. 2859 H 0.4005H Sin

Fig. 8.7. A 6th-Order Symmetrical Butterworth Diplexer with Insertion loss
32.8 dB at the Crossover Frequency w = 1 rad/s.
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-80dB"

10 log s12(j )2

-. -60dB"

,(I,

z
0
I-.

zt -40dB--z
"0

2..2

10 log 1S13(iw)I

-20 dB

0 0dB-
0.1 0.2 0.3 0.4 0.5 0.7 1 2 3 5 10

Fig. 8.8. The Frequency Response of the 6th-Order Symmetrical Butterworth

Diplexer of Fig. 8 with Insertion Loss 32.8 dB at w = 1 rad/s.

s + 7.7274s +29.856355s4 +73.96661s 3 + 125.868s2 + 145.8101s+ 132.9572
' 2(s) D .... ...... .. (8.80)

132.9572s 12+ 145.8101s 1+ 125.868sO +7396661s9 +29.856355s 8+7.7274s 7+s 6

13 D(s)

whert?
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D(s) = 132.9572s 2+1173.2236s +5222.2183slO+15234.351s

+31879.521s
8 + 49496.207s

7 +57393.406s
6 +49496.207s5

+31879.521s 4 +15234.351s 3 +5222.2183s 2 +173.2236s

+ 132.9572

NX'.

8.5 Conclusion

The problem of designing a diplexer of multiplexer is equivalent

to that of constructing a 3x3 or an nxn para-unitary matrix, whose

transmission coefficients possess the desired frequency characteristics.

Many techniques have been proposed in this regard. However, the process

is still long and complicated. A direct method of writing the matrix

of a diplexer is given, which extends Carlin's theorem to n-port net-

works. The problem of determining the elements of the scattering matrix,

equivalently to locating the complex zeros of the transmission coef-

* ficients, reduces to that of solving a set of second-order nonlinear

equations, which will constrict the search range and lead to the optimal

solutions. Using Newton iterative method and choosing the initial

values as suggested, the procedure converges rapidly, thereby making

the design of a diplexer having Butterworth response by direct and

analytic method possible.

Proof of Theorem 8.1. Consider the lossless reciprocal two-port Nk of
wk

Fig. 8.9. Let the input impedance of N be zk(s), when the output is

terminated in 1 0. Write

Ak(s) + B(S)
z k(S) = k + k(S) (8.82)

0.+

where Ak(s), Dk(s) are even polynomials and Bk(S), Ck(s) are odd, or

A. .4 vice versa; and Ak(S)/ k(s), Bk(s)/k(S), Ck(s)/4k(s) and Dk(S)/k(,)
a.
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+ lossless +

Sreciprocol
VkI two-port Vk 2.,. 
- - _ Nk

kN

.- z k (3)

Fig. 8.9. A Lossless Reciprocal Two-Port Network Terminated in z* and
1 Q.

are the transmission parameters of N defined by the equations
k

Ak(s) Bk(s)
* V ,1  (s )  V 2(S )  _ I ( S ) ( 8 .8 3 )

- ~k(S) Vk2(s) k k2

C(S) Dk(S) (S) (8.84)

I -k(S )  Vk2(S) k2

When Nk is reciprocal, Ak(s)Dk(s)-Bk(S)Ck(s) is a complete square [60],

and we have the relation

2 (s) = Ak(s)Dk(s)-Bk(S)Ck(S) (8.85)
.. "-

, Substituting (8.82) in (8.10) in conjunction with (8.85) yields

Wk(S)Wk (S) = + 2 8.86)

In (8.86), if Ak(s) and Dk(s) are even, we choose the plus sign and if

A. (s) and Dk(s) are odd, we use the minus sign. The elements of the

iscattering matrix Sk (s) of Nk normalizing to z k(s) and I 0 are found

to be

% 
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SWk(S)
wk, (s)

4 (s) = (8.87)

The block diagonal form of these n scattering matrices of (8.87)

constitutes the 2nx2n scattering matrix of the 2n-port network N of

Fig. 8.3 normalizing to z(s) , z ( ..., z (s) and n I-Q resis-

tances. Write the scattering matrix of the n-port N of Fig. 8.3

normalizing z (s), z2 (s), ... Z(s) as

.' .'.SI(s) S(s )~ .... , S in(s)

S2 22' 2n

21(s) = 
(8.88)

A Sn (s) Sn2 (s) ... S (s)

Using the above mentioned 2nx2n block diagonal matrix and (8.88) and

applying the connection formula given in Chen [141, we obtain (8.8).
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Appendix A: Program Package for the Design of Diplexers

Main programs: DIPLX2.

Subroutines: DPLXAJ, DPLXCH;
BTNK, BTCF;
POLY,FRQS;
PLOT1,CRT1,CRT2.
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C
C MAIN PROGRAM: DIPLX2.Ec

DOUBLE PRECISION OMEG(3),ALC(1O),OMEGA,OMEGAC,OMGCL,OMGCH,G1;G2,
1GA ,OMGCHI
DIMENSION X(50),YG('50,6)
READ, N,OMEGAC,ITYPE
WRITE(6,15)N,OMEGAC,ITYPE

15 FORMAT('l',5X,'N=',I3,I0X,'OMEGAC=',D2O.12,lox,'ITYPE-',Il//)
CALL DPLXAJ(N,OMEGAC,OMGCL,OMGCH, ITYPE)

DO 80 1-1,50Ii OMEGA=I*O.04
CALL DPLXCH(N,OMGCL,OMGCH,OMEGA,G1,G2,GA,ITYPE)
X(I)=OMEGA
YG(1,1)=G.

* YG(1,3)=GA
80 CONTINUE

OMEG (1 ) OMEGAC
OMEG(2)=l.
OMEG(3)=l./OMEGAC
DO 82 K=1,3

* CALL DPLXCH(N,OMGCL,OMGCH,OMEG(K),G1,G2,GA,ITYPE)
82 WRITE(6,85)OMEG(K),G1,G2,GA
85 FORMAT(6X,'OMEGA=',D20.12,5X,'G1=',D20.12,5X,'G2=',D20.12,5X,'GA-'

1,D20.12)
CALL BTNK (N,1.DO,1.DO,O.DO,OMGCL,ALC)
CALL CRTI (1.DO,ALC,N)
OMGCH1=1 ./OMGCH
CALL BTNK (N,lDO,'L.DO,0.DO,OMGCH1 ,ALC)
DO 86 1-1,N

86 ALC(I)-l./ALC(I)
CALL CRT2 (1.DO,ALC,N)
CALL PLOT1(X,YG,50,0.25,2)
STOP
END
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C SUBROUTINE DPLXAJ
C
C PURPOSE
C THE PROGRAM IS TO DESGIN A DIPLEXER COMPOSED OF A THREE-PORT
C CIRCULATOR AND TWO BUTTERWORTH NETWORKS AND TO DETERMINE
C THE NECESSARY ADJUSTMENT OF THE 3 DB CUT-OFF FREQUENCY
C IN EITHER LOW-PASS OR HIGH-PASS NETWORK.
C
C USAGE
C CALL DPLXAJ(N,OMEGAC,OMGCL,OMGCH,ITYPE)
C
C N - THE ORDER OF THE BUTTERWORTH RESPONSE.
C OMEGAC - THE CROSSOVER FREQUENCY IN RADIANS PER SECOND.
C OMGCL - THE ADJUSTED FREQUENCY OF THE LOW-PASS NETWORK.
C OMGCH - THE ADJUSTED FREQUENCY OF THE HIGH-PASS NETWORK.
C ITYPE - 1, THE ADJUSTED NETWORK IS A HIGH-PASS NETWORK.
C 2, THE ADJUSTED NETWORK IS A LOW-PASS NETWORK.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKS

* C DOUBLE PRECISION IS USED IN ALL THE COMPUTATIONS.
C THE INPUTS ARE N,OMEGAC AND ITYPE.
C THE OUTPUT IS EITHER OMGCL OR OMGCH.
C

SUBROUTINE DPLXAJ(N,OMEGAC,OMGCL,OMGCH,ITYPE)
*" DOUBLE PRECISION OMEGAC,OMGCL,OMGCH,OMGAJ

OMGAJ=(2./(1.+ OMEGAC**(4*N)) -1.)**(l./(2*N))/OMEGAC
GO TO (1,2),ITYPE

1 OMGCH=OMGAJ
OMGCL=OMEGAC
WRITE(6,10)OMEGAC,OMGCL,OMGCH

10 FORMAT('O',5X,'OMEGAC=',D20.12,5X,'OMGCL=',D20.12,5X,'OMGCH=',
1D20.12//)
GO TO 20

2 OMGCL=1./OMGAJ
OMGCH=1./OMEGAC
WRITE(6,15)OMEGAC,OMGCL,OMGCH

15 FORMAT('0',5X,'OMEGAC=',D20.12,5X,'OMGCL=',D20.12,5X,'OMGCH
iD20.12//)

*20 RETURN
END
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C SUBROUTINE DPLXCH

C PURPOSE
C THE PROGRAM IS FOR THE EVALUATION OF FREQUUENCY RESPONSE
C OF A DIPLEXER COMPOSED OF A THREE-PORT CIRCULATOR AND
C TWO BUTTERWORTH NETWORKS.
C
C USAGE
C CALL DPLXCH(N,OMGCL,OMGCH,OMEGA,G1,G2,GA,ITYPE)
C

C N -THE ORDER OF THE BUTTERWORTH RESPONSE.C OMGCL - THE CUT-OFF FREQUENCY OF THE LOW-PASS BUTTERWORTH
C NETWORK IN RADIANS PER SECOND.

C OMGCH - THE CUT-OFF FREQUENCY OF THE HIGH-PASS BUTTERWORTH
C NETWORK IN RADIANS PER SECOND.
C G1 - THE TRANSDUCER POWER GAIN OF THE LOW-PASS CHANNEL.
C G2 - THE TRANSDUCER POWER GAIN OF THE HIGH-PASS CHANNEL.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKS
C DOUBLE PRECISION IS USED IN ALL THE COMPUTATIONS.

* C THE INPUT VALUES ARE N,OMGCL,OMGCH,OMEGA.
C T'E OUTPUT IS GI AND G2.
C

SUBROUTINE DPLXCH(N,OMGCL,OMGCH,OMEGA,G1,G2,GA,ITYPE)
DOUBLE PRECISION OMGCL,OMGCH,OMEGA,G1,G2,GA
Gl=I0.*DLOGI(I.+(OMEGA/OMGCL)**(2*N))
G2=10.*DLOGI(1.+(OMGCH/OMEGA)**(2*N))
GO TO (1,2),ITYPE

1 GA=10.*DLOGIO(1.+(OMGCL/OMEGA )**(2*N))
G2=G2+GA
GO TO 20

2 GA=10.*DLOGI.0(1.+(OMEGA /OMGCH)**(2*N))
GI=GI GA

20 RETURN
END

S.L.
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C
C SUBROUTINE BTNK
C
C PURPOSE
C THE PROGRAM IS FOR THE CALCULATION OF THE ELEMENT VALUES OF
C AN OPTIMUM BUTTERWORTH LOW-PASS LADDER NETWORK TERMINATED
C IN A RESISTIVE GENERATOR WITH INTERNAL RESISTANCE R1 AND
C A PARALLEL RC LOAD.
C
C USAGE
C CALL BTNK(N,R1,R,C,OMEGAC,ALC)
C
C N - THE ORDER OF THE BUTTERWORTH RESPONSE.
C RI - THE INTERNAL RESISTANCE OF THE SOURCE.
C R - THE RESISTANCE OF THE LOAD.
C C - THE CAPACITANCE OF THE LOAD.
C OMEGAC - THE CUT-OFF FREQUENCY OF THE BUTTERWORTH NETWORK IN
C RADIANS PER SECOND.
C ALC - THE ELEMENT VALUES OF THE BUTTERWORTH NETWORK.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.

* C
C REMARKS
C DOUBLE PRECISION IS USED IN ALL THE COMPUTATIONS.
C THE INPUTS ARE NRI,R,C AND OMEGAC.
C THE OUTPUT IS ALC.
C

SUBROUTINE BTNK(N,RI,R,C,OMEGACALC)
REAL*8 NT
DOUBLE PRECISION R,R1,C,CI,OMEGAC,PI,XP,XQ,AK,B,DELTA,RA
2. ,RB,RC,RD,RE,ALC(1)

*PI=3.1415926535898
XP=R*C*OMEGAC
XQ=2.*DSIN(PI/(2.*N))
IF(XP.LT.XQ) GO TO 20

10 DELTA=1.0-XQ/XP
CI=C
AK=I.-DELTA**(2*N)
GO TO 30

20 DELTA=0.
*AK=I.

CI=XQ/(R*OMEGAC)
*30 B=DELTA**N

NT=DSQRT(RI*(I.+B)/(R*(l.-B)))
WRITE(6,50)DELTA,AK,NT

50 FORMAT('I',2X,'DELTA= ',D20.12/3X,'AK= ',D20.12/3X,'NT =',D23.1
.6~-12/)

ALC(1) =Cl-C
WRITE(6,60)ALC(1)
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60 FORMAT(3X,'C( l)u',lX,D20.12)
J=N/2
DO 90 M=1,J
RA=PI*(4*M-3)/(2.*N)
RB=PI*(4*M-2)/(2.*N)
RC=PI*(4*M-1)/(2.*N)
MM=2*M
ALC(MM)=4.*DSIN(RA)*DSIN(RC)/(Cl*OMEGAC**2*(l.-2.*DCOS(RB)*
4DELTA#DELTA**2))
WRITE(6, 65)MM,ALC(MM)

65 FORMAT(3X,'L(',12,')= ',D20.12)
IF(MM-N) 70,90,90

70 RD=PI*4*M/(2.*N)
RE=PI*(4*M+1)/(2.*N)
Cl=4. *DSIN(RC)*DSIN(RE)/(ALC(MMJ)*OMEGAC**2* (1.-2.*DELTA*DCOS(RD)
5+DELTA** 2))
HI42=mN+2
ALC(MM1)=Cl

- WRITE(6,80)MM1,ALC(MMI)
* 80 FORMAT(3X,'C(',12,')= ',D20.1.2)

90 CONTINUE
200 RETURN

* END
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C
C SUBROUTINE BTCF
C
C PURPOSE
C THE PROGRAM IS FOR THE COMPUTATION OF THE COEFFICIENTS OF
C THE BUTTERWORTH POLYNOMIAL OF ORDER N.
C
C USAGE

. C CALL BTCF(N,A)
C
C N - THE ORDER OF THE BUTTERWORTH RESPONSE.
C A - THE VALUES OF THE BUTTERWORTH COEFFICIENTS.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

.. C NONE.
C
C REMARKS
C DOUBLE PRECISION IS USED IN ALL THE COMPUTATIONS.
C THE INPUT IS N.
C THE OUTPUT IS A.

*" SUBROUTINE BTCF(N,A)
DOUBLE PRECISION A(l),AA,PI

* P1=3.415926535898
NN=N-1
AA=l.
A(1)=AA
DO 10 IU=INN
AA=AA*DCOS((IU-I)*PI/(2*N))/DSIN(IU*PI/(2*N))
A (I U4+1) =AA

10 CONTINUE
NN=N+I
A(NN)=I.
RETURN
END

.18
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C SUBROUTINE PULY
C

*- C PURPOSE
C THE PROGRAM IS FOR THE EVALUATION OF THE VALUES OF
C A COMPLEX POLYNOMIAL AT A FIXED RADIAN COMPLEX
C FREQUENCY Y.
C
C USAGE
C CALL POLY(NA,Y,Q)
C
C N - THE ORDER OF THE POLYNOMIAL.
C A - THE POLYNOMIAL COEFFICIENTS.
C Y - THE RADIAN COMPLEX FREQUENCY.
C Q - THE VALUE OF THE POLYNOMIAL EVALUATED AT Y.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKS

° C DOUBLE PRECISION IS USED IN ALL THE COMPUTATIONS.
C THE INPUTS ARE N,A AND Y.
C THE OUTPUT IS Q.c

. SUBROUTINE POLY (N,A,Y,Q)
COMPLEX*16 YQ

- -DOUBLE PRECISION A(1)
'" NN=N+I
". Q=o.

Du 10 IU=I,NNQ=4A(lU' *Y** (lu-I)

10 CONTINUE
; RETURN

END

Q% %
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C SUBROUTINE FRQS
C
C PURPOSE
C THE PROGRAM IS FOR THE EVALUATION OF THE MAGNITUDE RESPONSE
C OF A SYMMETRICAL DIPLEXER COMPOSED OF TWO CANONICAL
C BUTTERWORTH NETWORKS AT A FIXED RADIAN FREQUNCY OMEGA.
C
C USAGE
C CALL FRQS(N,A OMEGAC,OMEGA,GI2,GI3,ITYPE)
C
C N - THE ORDER OF THE BUTTERWORTH RESPONSE.
C A - THE BUTTERWORTH COEFFICIENTS.
C OMEGAC - THE CUT-OFF FREQUENCY OF THE LOWPASS BUTTERWORTH
C NETWORK IN RADIAN.

.- C OMEGA - THE RADIAN FREQUENCY.
C G12 - THE TRANSDUCER POWER GAIN FROM PORT 1 TO PORT 2 AT
C A FIXED FREQUENCY OMEGA.
C G13 - THE TRANSDUCER POWER GAIN FROM PORT I TO PORT 3 AT
C A FIXED FREQUENCY.
C ITYPE - 0, G12 AND G13 ARE IN RATIO.
C - 1, G12 AND G13 ARE IN DB.
C

* C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C CALL POLY(N,A,Y,Q)
C
C REMARKS
C DOUBLE PRLCISION IS USED IN ALL THE COMPUTATIONS.
C THE INPUTS ARE N,A,OMEGAC AND OMEGA.
C THE OUTPUTS ARE G12 AND G13.
C

SUBROUTINE FRQS(N,A,OMEGAC,OMEGA,G12,GI3,ITYPE)
COMPLEX*16 Y,Y1,Y2,PPI,QQ1,PP2,QQ2,QI,Q2,SD,S12,Sl3,Z1,Z2
DOUBLE PRECISION OMEGA,OMEGAC,A(1),IMAG,G12,Gl3,REAL
Y=DCMPLX(0.0D0 ,OMEGA)
YI=Y/OMEGAC
CALL POLY(N,A,YI,QI)
Y2=Y*OMEGAC

CALL POLY (N,A,Y2,Q2)
PP1=Qi-Yl**N
QQI=QI+YI**N
PP2=Q2-1.

0QQ2=Q21.
SD=PP!*QQ2+PP2*QQI+QQ1*QQ2
SI2=2.*QQ2/SD
S13=2.*(Y2**N)*QQ1/SD
G12=CDABS(SI2)
G13=CDABS(Si3)
ZI=(Q'-YI**N)/(QI+YI**N)
Z2=(Q2-! )/(Q2+1.)
IF(ITYPE.NE.0) RETURN
G12=-2C.*DLOGO0(GI2)
GI3=-2C.*DLOG10(GI3)
RETURN

. END
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C SUBROUTINE PLOT1
C

* C PURPOSE
C THE PROGRAM IS FOR THE PLOTTING ONE OR MORE CURVES
C (UP TO SIX) ON ONE PLOT BY A LINE PRINTER.
C
C USAGE
C CALL PLOT1(X,Y,N,DY,M)
C
C X - A ONE-DIMENSIONAL ARRAY.
C Y - A TWO-DIMENSIONAL ARRAY.
C N - THE NUMBER OF POINTS FOR EACH CURVE TO BE PLOTTED.
C DY - THE SCALE FACTOR OF Y.
C DY WILL BE DETERMINED AUTOMATICLY IF SET DY=0.
C M - THE NUMEBER OF CURVES TO BE PLOTTED ON
C A SINGAL PLOT.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.

SUBROUTINE PLOT1(X,Y,N,DY,M)
INTEGER ROW(81),STAR,BLANK,POINT,S3,$4,S5,PLUS
DATA STAR,BLANK,POINT,PLUS,S3,S4,S5,S6/1H*,IH ,IH.,1H+,IH-,1H$,lH:

1,I.H&/

DIMENSION X(N),Y(N,M)
YMIN=1.E10
YMAX=-i.E-10
DO 5 1=1,81

5 ROW(I)=BLANK
DO 10 J=1,M
DO 10 I=1,N
1 F(Y(I,J).GT.YMAX) YMAX=Y(I,J)

10 IF(Y(I,J).LT.YMIN) YMIN=Y(I,J)
D=DY
IF(DY.EQ.0.) D=(YMAX-YMIN)/100.
IF(YMAX.LT.0.OR .YMIN.GT.0.) GO TO 15
NZ=-YMIN/D+I*-'1

ROW(NZ)=POINT
15 CONTINUE

NN=N-4
WRITE(6,20)

20 FORMAT('i',5X,'X(1)',8X,'Y(I,1)')
WRITE(6,25)

25 FORMAT(37X,'+',8(' -----------
DO 90 L=1,NN,5
DO 90 LL=1,5
I=L+LL-1

6. IF(I.NE.N) GO TO 32
'7 DO 30 K=1,72,10

ROW(K) =PLUS
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DO 30 KK=1,9
K1=K+KK

30 ROW(Kl)=S3
GO TO 34

32 ROW(1)=S5
ROW( 81) =S5
IF(LL.EQ.5) ROW(1)=PLUS
IF(LL.EQ.5) ROW(81)=PLUS

34 CONTINUE
DO 50 J=2.,M
NY=(Y(I ,J)-YMIN)/D+1.5
IF(NY.GT.81) GO TO 50
GO TO (41,42,43,44,45,46), J

41 ROW(NY)=POINT
-~ GO TO 50

42 ROW(NY)=STAR
GO TO 50

43 ROW(NY)=PLUS
GO TO 50

44 ROW(NY)=S3
GO TO 50

45 ROW(NY)=S4
GO TO 50

46 ROW(NY)=S5
50 CONTINUE

WRITEC6,60) X(l),Y(I,1),ROW
60 FORMAT(1X,2El3.6,1OX,8lAl)

DO 80 K=1,81
80 ROW(K)=BLANK
90 CONTINUE

RETURN
END
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1. C SUBROUTINE CRTI

C PURPOSE
C THE PROGRAM IS FOR THE PRINTING OF THE CONFIGURATION
C AND THE ELEMENT VALUES OF A LADDER LOW-PASS
C LOSSLESS NETWORK TERMINATED IN A RESISTANCE LOAD.
C
C USAGE
C CALL CRTI(R,ALC,N)
C
C N - THE ORDER OF THE NETWORK.
C R - THE RESISTANCE OF THE LOAD.
C ALC - THE ELEMENT VALUES OF THE LADDER NETWORK.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKES
C DOUBLE PRECISION IS USED.
C THE INPUTS ARE R,ALC AND N.
C THE OUTPUTS ARE THE VALUES OF THE ELEMENTS.
c

SUBROUTINE CRTI(R,ALC,N)
DOUBLE PRECISION R,ALC(1)
WRITE(6,5)

5 FORMAT('l',3X,'CIRCUIT CONFIGURATION'//)
DO 20 M=I,N,2
WRITE(6,30) M,ALC(M)

30 FORMAT(4(3X,' ',23X,' '/)
33X,' I',I1 ('-'),'C',I ( '-'),'I',11X,'C(',I2,')=',D20.12,3X,
4'F'/3(3X,'I',23X,'I'/))
MM=M+1
IF(MM.GT.N) GO TO 20
WRITE(6,40) MM,ALC(M+I)

40 FORMAT(3X,'j',23X,'L',IIX,'L(',I2,')=' ,D20.12,2X,
5' H')

20 CONTINUE
WRITE(6,10)R

10 FORMAT(3(3X,' ' ,23X,' '/),
14X,11( '-' ) ' ,( -,'-') , R=' ,D24.12,2X,'OHM')
RETURN
END
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C SUBROUTINE CRT2

C PURPOSE
C THE PROGRAM IS FOR THE PRINTING OF THE CONFIGURATION AND
C THE ELEMENT VALUES OF A LADDER HIGH-PASS LOSSLESS
C NETWORK TERMINATED IN AN RESISTIVE LOAD.
C
C USAGE
C CALL11 CRT2(R,C,ALC,N)
C
C N - THE ORDER OF THE NETWORK.
C R - THE RESISTANCE OF THE LOAD.
C ALC - THE ELEMENT VALUES OF THE LADDER NETWORK.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKS
C DOUBLE PRECISION IS USED.
C THE INPUTS ARE R,C,ALC AND N.
C THE OUTPUT IS THE ELEMENT VALUES.
C
C

SUBROUTINE CRT2(R,ALC,N)
DOUBLE PRECISION R,ALC(1)
WRITE( 6,5)

5 FORMAT('l',3X,'CIRCUIT CONFIGURATION'//)
DO 20 M=1,N,2
WRITE( 6, 30) M,ALC(M)

30 FORMAT(4(3X,'I',23X,'I'/)

4'H'/3(3X, 'I',23X, 'I!))

IF(MM.GT.N) GO TO 20
WRITE(6,40) MM,ALC(M4-)

40 FORMA' (3X, 'j',23X, 'C' ,11X, 'C(',I2,' )=' ,D20.J.2,2X,
5' F'/)

20 CONTINUE
WRITE(6,10)R

10 FORMA(3(3X, 'I' ,23X, 'I 'I)
1 4X,1.( '-') , 'H',11( '-' ),11X, 'R=' ,D24.12,2X, 'OHM')

* RETURN
END
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Apendix B: Program Package for the Design of Multiplexers

-. Main programs: MUPLX

'e' Subroutines: MPLX, BTNK;
S "BPT, CRT1;

PLOT1.
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c

C MAIN PROGRAM
Ci,

DOUBLE PRECISION OMEGAE(10,2) ,OMEGA,OMEGA1,OMEGA2,OMEGAO(.O)
* 1G21(10),Gll(10),G21M(10),DG21M(10),B(1O),

lR1,R,C,ALC(10) ,AL(10) ,AC(10)
DIMENSION X(50) ,YG(50,6) ,zG(50,6) ,YG1(50,6) ,ZG1(50,6)
READ, N,OMEGA1,OMEGA2
WRITE (6,10 )N ,OMEGA1 ,OMEGA2

10 FORMAT("',5X,'N=',I3,10X,'OMEGA1=',D20.12,1OX,'OMEGA2=',D20
* READ,M

WRITE(6,15)M
15 FORMAT(6X,'M=',I3//)

-~ DO 20 I=1,M
READ, OMEGAE(I,1),OMEGAE(I,2)

20 WRITE(6,25)I ,OMEGAE(I ,1) ,I ,OMEGAE(I ,2)
25 FORMAT('0',5X,'OMEGAE(',I2,',l)=',D20.12,10X,'OMEGAE(',12,',

120.12)
WRITE(6,30)

30 FORMAT('1',4X,'OMEGA',BX,'G21M'/)
DO 80 I=1,50
OMEGA=OMEGA1+ (OMEGA2-OMEGA1 )*1/50.
X(I )=OMEGA
CALL MPLX(N,M,OMEGA,OMEGAE,G21M)
WRITE(6,35)OMEGA, (G21M(J) ,J=1,M)

- -35 FORMAT(1X,5(D12.5))
DO 40 K=1,M

40 YG(I,K)=G21M(K)
80 CONTINUE

CALL BTNK (N,1.DO,1.DO,0.DO,1.DO,ALC)
CALL CRT1 (1.DO,ALC,N)
DO 100 I=1,M
WRITE(6,99) I

99 FORMAT('0',8X,'M=',I2/)
CALL BPT (N,OMEGAE(I,1),OMEGAE(I,2),ALC,AL,AC)

100 CONTINUE
CALL PLOT1(X,YG,50,0.25,M)
STOP
END
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C SUBROUTINE MPLX
C
C PURPOSE
C THE PROGRAM IS FOR THE EVALUATION OF FREQUUENCY RESPONSE
C OF A MULTIPLEXER COMPOSED OF A MULTI-PORT CIRCULATOR
C THE BUTTERWORTH NETWORKS.

L:" C
C USAGE
C CALL MPLX(N,M,OMEGA,OMEGAE,G21M)
C
C N - THE ORDER OF THE BUTTERWORTH RESPONSE.
C M - THE NUMBER OF CHANNELS.
C OMEGA - THE RADIAN FREQUENCY.
C OMEGAE - THE EDGE FREQUENCIES OF THE BAND-PASS RESPONSE.
C DG21M - THE TRANSDUCER POWER GAIN.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKS
C DOUBLE PRECISION IS USED IN ALL THE COMPUTATIONS.
C THE INPUT VALUES ARE N,M, OMEGA,OMEGAE.
C THE OUTPUT IS G21M.
C

SUBROUTINE MPLX(N,M,OMEGA,OMEGAE,G21M)
DOUBLE PRECISION OMEGAOMEGABOMEGAE(10,2),OMEGAO(10),G21(10
IGII(10),DG21M(10),B(10),G21M(M)
DO 10 I=1,M
OMEGAO(I)=(OMEGAE(I,1)*OMEGAE(I,2))**0.5
B(I)=OMEGAE(I,2)-OMEGAE(I,I)
OMEGAB=(OMEGAO(I1)/B(I))*(OMEGA/OMEGAO(I)-OMEGAO(1)/OMEGA)
G21(I)=10.*DLOG10(1.+ OMEGAB**(2*N))
GIF(I)=10.*DLOG10(1.+(I./OMEGAB)**(2*N))
IF(I.NE.1) GO TO 5
G21M(I)=G21(I)
DG21M(I)=GIl(I)
GO TO 10

5 DG21M(I)=DG21M(i-1)+G11(I)
G21M(I)=G21(I)+DG21M(I-1)

10 CONTINUE
*RETURN

END

N.



c
C SUBROUTINE BTNK
C
C PURPOSE
C THE PROGRAM IS FOR THE CALCULATION OF THE ELEMENT VALUES

" C AN OPTIMUM BUTTERWOi~fH LOW-PASS LADDER NETWORK TERMINA
C IN A RESISTIVE GENERATOR WITH INTERNAL RESISTANCE R1 A
C A PARALLEL RC LOAD.
C
C USAGE
C CALL BTNK(N,R1,R,C,OMEGAC,ALC)
C
C N - THE ORDER OF THE BUTTERWORTH RESPONSE.
C R1 - THE INTERNAL RESISTANCE OF THE SOURCE.
C R - THE RESISTANCE OF THE LOAD.
C C - THE CAPACITANCE OF THE LOAD.
C OMEGAC - THE CUT-OFF FREQUENCY OF THE BUTTERWORTH NETWORK
C RADIANS PER SECOND.
C ALC - THE ELEMENT VALUES OF THE BUTTERWORTH NETWORK.

-'4 C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.

C REMARKS
C DOUBLE PRECISION IS USED IN ALL THE COMPUTATIONS.
C THE INPUTS ARE N,R1,R,C AND OMEGAC.,
C THE OUTPUT IS ALC.
C

SUBROUTINE BTNK(N,R1,R,C,OMEGAC,ALC)
REAL*8 NT
DOUBLE PRECISION R,R1,C,CI,OMEGAC,PI,XP,XQ,AK,B,DELTA,RA
1,RB,RC RD,RE,ALC(1)
PI=3.1415926535898
XP=R*C*OMEGAC
XQ=2.*DSIN(PI/(2.*N))
IF(XP.LT.XQ) GO TO 20

10 DELTA=1.0-XQ/XP
CI=C
AK=1.-DELTA**(2*N)
GO TO 30

20 DELTA=O.
AK=I.
CI=XQ/(R*OMEGAC)

30 B=DELTA**N
..'.-,NT=DSQRT(RI*(I.+B)/(R*(I.-B)))

WRITE(6, 50)DELTAAK,NT
50 FORMAT('!',2X,'DELTA= ',D20.12/3X,'AK= ',D20.12/3X,'NT ='

6. 12/)
ALC(I)=Ci--C

"- " WRITE(6,6')ALC(1)

".



60 FORMAT(3X,'C( 1)=',lX,D20.12)
j3=N/2
DO 90 M=1,J
RA=PI *(4*M-3 )/( 2. *N)
RB=PI* (4*M-2 )/( 2. *N)
RC=PI* (4*M-1)/(2.*N)
MM=2*M
ALCUN!'Y)=4 *DSIN(RA) *DSIN(RC)/(C*OMEGAC**2*(12.*DCOS(RB)*

4DELTA+DELTA** 2))
WRITE(6, 65)MM,ALC(MM)

65 FORMAT(3X,'L(',12,')= ',D20.12)
IF(MMY-N) 70,90,90

70 RD=PI*4*M/(2.*N)

RE=Pl*(4*M+1)/(2.*N)
C1=4.*DSIN(RC)*DSIN(RE)/(ALC(MM)*OMEGAC**2* (1.-2.*DELTA*DCOS(

5+DELTA** 2))
mm 1= mm+1
ALC(MM1)=Cl
WRITE(6,80 )MM1 ,ALC(MMl)

80 FORMAT(3X, 'C(',12, ')= ' ,D20.12)
90 CONTINUE

100 RETURN
END



C
C SUBROUjTTNE BPT
C
C PURPOSE
C THE PROGRAM IS FOR THE EVALUATION OF THE ELEMENT VALUES OF

* C A BANDPASS FILTER FROM THE LOWPASS FILTER.
- C

- C USAG E
* C CALL BPT(N,OME-GAI,OMEGA2,ALC,AL,AC)

C
C N - THE ORDER OF THE FILTER.
C OYEGAI - THE EDGE FREQUENCY OF THE BAND-PASS RESPONSE.
C OMEGA2 - THE EDGE FREQUENCY OF THE BAND-PASS RESPONSE.
C ALC - THE VALUES OF THE ELEMENTS OF LOW-PASS FILTER.
C AL - THF VALUES OF THE INDUCTANCES OF BANDPASS FILTER.
C AC - THE VALUES OF THE CAPACITANCES OF BANDPASS FILTER.
C

A C SUBRCUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NIONE.
C
C REMARKS

CDOU"_BLE PREIINISUE IN ALL THE COMPUTATIONS.
* C T;UE: INPU:T VALUES ARE N,OMEGA1,OMEGA2 AND ALC.

C THE OUjTPUT IS AL AND AC.
C

SUOTINE BPT(N,OMEGA1,OMEGA2,ALC,AL,AC)
DOUBL E PRECISION OMEGA1,OMEGA2,ALC(N),AL(N),AC(N),OMEGAO,B
OMEGAOC (OM)EGAI%"*OMEGA2 )**Q 5
B=OMEGA2 -OMEGA I
DO 10 J=1,N,2
AL ( ) =ALC (J3) ,B

10 AC(3 )=B/(ALC'3)*OMEGAO**2)
DO 20 3=2,N,2
AC (3) ALC (3) /B

2C AL(,7)=B,/(AL-C(,3)*OMEGAO**2)
DO 43 3vL,N

40 WRE(6,50 Z,AL(3),3,AC(3)
50 FORY.A': (1 C, 'AL ( ,12, )=',D20 .12, 5X,'AC ( ',I2, ) =',D20 .12)

RETURN
END

.
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C
C SUi3RDUTTNE CRT!
C
C PURPCSE
C T- RGA S FOR THE PRINTING OF THE CONFIGURATION
C AND E LEMENT VALUES OF A LADDER LOW-PASS

C LOSSLE-SS NTOR TEMNATED IN A RESISTANCE LOAD.

C USAGE
C CAL__L CPTI R , A L C ,N)
C
C N - T1hE ORDER OF THE NETWORK.
C R - THE- RESISTANCE OF THE LOAD.
C ALC THE ELEMENT VALUES OF THE LADDER NETWORK.
C
C SUBROUT_:NES AND FUNCTITON SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKES

C DOUBLE RESONIS USED.
C H NPT RE R,ALC AND N.

C THE O'UTPUTS ARE THE VALUES OF THE ELEMENTS.
* C

SUBROT:NECRTI7(R,ALC,N)
DOUBLE PRECISION R,ALC(l)
WRITE(6,5)

5FORMAT ( ' ' ,-,' ,'CIRCU IT CONFIGURATION'//)
DO 20 M=1,N,2
WR T TE(6,30) M,ALC(M)

30 FORMAT(4(3X,'l',23X,'I'/)

a 4'F',/3(3X, 'l',23X,' ''/ '

IF(MM.GT.N GO TO 20
WR7TE( 6, 4r) NMALC(Y4-1)

40 FO(RMAT(3X, '!' ,23X, 'L' ,I1X, 'DC',I2, ')=' ,D20.12,2X,
5' H')

20 CONTINUE;;
* *WRI TE (t, 1 R

10 FORMAT (3 (3X, ''2 3X,'',),'R ,D2.2,X OH)

END
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C SUBROUTINE PLOT1
C
C PURPOSE
C THE PROGRAM IS FOR THE PLOTTING ONE OR MORE CURVES
C (UP TO SIX) ON ONE PLOT BY A LINE PRINTER.
C
C USAGE
C CALL PLOT1(X,Y,N,DY,M)
C
C X - A ONE-DIMENSIONAL ARRAY.
C y - A TWO-DIMENSIONAL ARRAY.
C N - THE NUMBER OF POINTS FOR EACH CURVE TO BE PLOTTED
C DY - THE SCALE FACTOR OF Y.
C DY WILL BE DETERMINED AUTOMATICLY IF SET DY=O.
C M - THE NUMEBER OF CURVES TO BE PLOTTED ON
C A SINGAL PLOT.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.

SUBROUTINE PLOT1(X,Y,N,DY,M)
INTEGER ROW(81),STAR,BLANK,POINT,S3,S4,S5,PLUS

*- DATA STAR,BLANK,POINT,PLUS,S3,S4,S5,S6/IH*,1H ,lH.,lH+,lH-,lH
1, H&/
DIMENSION X(N),Y(N,M)
YMIN=1.EI0
YMAX=-I.E-10
DO 5 I=1,81

5 ROW(I)=BLANK
DO 10 J=1,M
DO 10 I=1,N
IF(Y(I,J).GT.YMAX) YMAX=Y(I,J)

10 IF(Y(I,J).LT.YMIN) YMIN=Y(I,J)
D=DY
IF(DY.EQ.0.) D=(YMAX-YMIN)/100.
IF(YMAX.LT.0.OR .YMIN.GT.0.) GO TO 15
NZ=-YMIN/D+I
ROW(NZ)=POINT

*1* 15 CONTINUE
NN=N-4
WRITE(6,20)

20 FORMAT('1',5X,'X(I)',8X, 'Y(I,1)')
. ~ WRITE(6,25)

25 F37!' T(37X,'+' ,8(' ---------- +))

DO 90 L=1,NN,5
DO 90 LL=I,5
I=L+LL-1

S. IF(I.NE.N) GO TO 32
DO 30 K=1,72,10
ROW(K)=PLUS

VS



DO 30 KK=1,9
Kl=K+KK

30 ROW(1)=S3
GO TO 34

32 ROW(1)=S5
ROW( 81) =S5
IF(LL.EQ.5) ROW(1)=PLUS
IF(LL.EQ.5) ROW(81)=PLUS

34 CONTINUE
DO 50 J=1,M
NY=(Y(I ,J)-YMIN)/D+1.5
IF(NY.GT.81) GO TO 50
GO TO (41,42,43,44,45,46), J

41 ROW(NY)=POINT
GO TO 50

42 R0W(NY).=STAR
GO TO 50

43 ROW(NY)=PLUS
GO TO 50

44 ROW(NY)=S3
w GO TO 50

45 ROW(NY)=S4
SGO TO 50

46 ROW(NY)=S5
50 CONTINUE

60 FORMAT(ILX,2El3.6,1OX,81Al)
p. DO 80 K=1,81

80 ROW(K)=BLANK
90 CONTINUE

RETURN
END
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Appendix C: Program Package for the Design of Diplexers

Main programs: DIPLX.

Subroutines: DPLX;
BTNK, BTCF;
POLY,FRQS;
PLOT1,CRT1,CRT2.

m20
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C MAIN PROGRAM: DIPLX.

DOUBLE PRECISION OMEGA,OMEGAC,k.(20) ,G12,G13,OMEGCO,ATCO,R,R1,
1ALC(20)
DIMENSION X(50),YG(50,2)
READ, OMEGCO,ATCO,N, ITYPE
WRITE(6,30) OMEGCO,ATCO

30 FORMAT('l',4X,'OMEGCO=',D20.12,5X,'ATCO=',D20.12)
CALL DPLX ( 1.0D00,ATCO,N,OMEGAC,A,ITYPE)
CALL BTNK (N,1 .D0, ..D0 ,0.D0,OMEGAC,ALC)
CALL CRT1 (1.DO,ALc,N)
DO 40 IK1.,N

40 ALC(I)=1./ALC(I)
CALL CRT2 (l.DO,ALC,N)
DO 90 I=1,50
OMEGA=OMEGCO*0.04*I
CALL FRQS(N,A,OMEGAC,OMEGA,G12,Gl3 ,ITYPE)
X(I)=OMEGA
YG Ie= l

YG(I,2)=Gl3
90 CONTINUE

* CALL PLOT1 (X,YG,50,0.25,2)
STOP
END

-- 01



C SUBROUTINE DPLX
C
C PUPPOSE
C THE PROGRAM IS TO DESIGN A SYMMETRICAL DIPLEXER COMPOSED OF
C TWO BUTTERWORTH NETWORKS AND TO DETERMINE THE 3 DB CUT-
C OFF RADIAN FREQUENCY OF THE LOW-PASS FILTER HAVING
C THE PREASSIGNED ATTENUATION AT CROSSOVER FREQUENCY.
C
C USAGE
C CALL DPLX(OMEG-C,ATCONOMEGACITYPE)
C
C OMEGCO - THE CROSSOVER FREQUENCY IN RADIANS PER SECOND.
C ATCO - THE ATTENUATION AT THE CROSSOVER FREQUENCY.
C N - THE ORDER OF THE BUTTERWORTH RESPONSE.

C OMEGAC - THE CUT-OFF FREQUENCY OF THE BUTTERWORTH NETWORK IN
C RADIANS PER SECOND.
C ITYPE - 0, ATCO IS IN RATIO.
C 1, ATCO IS IN DB.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C CALL BTCF(N,A)
C CALL FRQS(N,A,OMEGAC,OMEGCO,GI2,GI3,ITYPE)

* C
C REMARKS
C DOUBLE PREC'SION IS USED IN ALL THE COMPUTATIONS.
C THE INPUTS ARE OMEGCOATCO,N AND ITYPE.
C THE OUTPUT IS OMEGAC.
C

SUBROUTINE DPLX(CMEGCO,ATCON,OMEGACAITYPE)
DOUBLE PRECISION OMEGAI,OMEGCO,OMEGAC,AT1,ATCO,W,W2,GI2,GI3,A(1)
1,AA
ALPHA=. 618
IF(N.EQ.0) N=2

10 CALL BTCF(N,A)
Wl=0.
W2=OMEGCO

1 OMEGAC=W4 ALPHA*(W2--Wl)
CALL FRQS(N,A,OMEGAC,OMEGCO,Gl2,GI3,ITYPE)
IF(G12-ATCO) 15,5,2

2 IF(GI2-1.01*ATCO) 5,5,3
3 W1=OMEGAC

GO TO 1
15 W2=OMEGAC

GO TO 1
5 WRITE(6,6C)OMEGAC,Gl2

60 FORMAT(SX, 'OMEGAC=',D20.12,5X,'ATCO=',D20.12)
RETURN
END

1',M°
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C SUBROUTIE BTNK

C PUR o S E
C THE PRRAM IS FOR THE CALCULATION OF THE ELEMENT VALUES OF

C AN OPTIMUM BUTTERWORTH LOW-PASS LADDER NETWORK TERMINATED
C IN A RES:STIVE GENERATOR WITH INTERNAL RESISTANCE R1 AND
C A PARALLEL RC LOAD.

-? C
C USAGE
C CALL BTNF( ,R, RC,OMEGAC,ALC)

C
C N - THE ORDER OF THE BUTTERWORTH RESPONSE.

- C R - THE INTERNAL RESISTANCE OF THE SOURCE.
C R - THE RESISTANCE OF THE LOAD.
C C - THE CAPACITANCE OF THE LOAD.
C OMEGAC .. THE CUT-OFF FREQUENCY OF THE BUTTERWORTH NETWORK IN
C RADIANS PER SECOND.

-. C ALC - THE ELEMENT VALUES OF THE BUTTERWORTH NETWORK.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKS
C DOUBLE . ECISION IS USED IN ALL THE COMPUTATIONS.
C THE INPUTS ARE N,R1,R,C AND OMEGAC.
C THE OUTPUT IS ALC.
C

SUBRoUTINE T P',PI ,,C, OMEGAC,ALC)
REAL*8 NT
DOUBLE PRECS . R,RIC,C1,OMEGAC,PI,XP,XQ,AK,B,DELTA,RA

4" 1,RB,RC,RD,RE,ALC(i)

PI=3.1415926535898
'4.4' XP=R*C*OMEGAC

XQ=2.*DSiN(PIT (2.*N)
IF(XP.LT.XQ) GO TO 20

e4 10 DELTA=!.0-XQ/XP
Cl=C
AK=. l:~~k
GO TO 30

/
" 20 DELTA=0.

* .AK=!.
3 CI=X'( *MEGA )
30 B=DELTA**N

-pie NT=DSR -PT (Pi* -B)
WR:TE( ,eJD 7A,AK,NT

50 FORMAT('17 ,2X,'DL'TA= ',D20.12/3X,'AK= ',D20.12/3X,'NT =',D23.1
. 12/)

ALC(!)=Ci-C
WRITE 6, 1:ALC I

.
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60 FORMAT(3X, 'C( 12=' ,1X,D20.12)
J=N/2
DO 90 M-KL,3
RA=PI *(4*M-3)/(2.*N)

RB=PI *(4*M-2 )/ (2. *N)Ii RC=PI *(4*M-1 )/( 2. *N)
ALC(MM,)=4.*DSIN(Ri) *DSIN(RC)/(Cl*OMEGAC**2*(-2.*DCOS(RB)*

4DELTAI.-DELTA**2))
WRITE(6, 65)MM,ALC(MM)

65 FORMAT(3X, 'L(' ,12,')= ' ,D20.1A2)
IFCMM-N) 70,90,90

70 RD=?I*4*M1 /(2.*N)
RE=PI*(4*IA+1)/(2.*N)
Cl=4T.*DSIN(RC)*DSIN(RE)/(ALC(N)*OMEGAC**2*(l.-2.*DELTA*DCOS(RD)

5-~DELTA** 2))
W, 1 =P MM 1
ALC(MMi ) =Cl
WRITE(6,80)Kml1,ALC(MN1)

80 FORMAT(3X,'C(',I2,')= ',D20.12)
90 CONTINUE

100 RETURN
END

V2
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C
C SUBROUTINE BTCF
C

C PURPOSE
C THE PROGRAM IS FOR THE COMPUTATION OF THE COEFFICIENTS OF

C THE BUTTERWORTH POLYNOMIAL OF ORDER N.
C
C USAGE
C CALL BTCF(N,A)
C
C N - THE ORDER OF THE BUTTERWORTH RESPONSE.
C A - THE VALUES OF THE BUTTERWORTH COEFFICIENTS.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKS
C DOUBLE PRECISION IS USED IN ALL THE COMPUTATIONS.
C THE INPUT IS N.
C THE OUTPUT IS A.
C

SUBROUTINE BTCF(N,A)
DOUBLE PRECISION A(1),AA,PI
PI=3.1415926535898
NN=N-1
AA=!.
A(! )=AA
DO 10 IU=1,NN
AA=AA*DCOS((IU-I)*PI/(2*N))/DSIN(IU*PI/(2*N))
A(IU+I)=AA

10 CONTINUE
NN=N+I
A(NN)=I.
RETURN
END

S.,
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C SUBROUTINE POLY

C
C PURPOSE
C THE PROGRAM IS FOR THE EVALUATICN OF THE VALUES OF
C A COMPLEX POLYNOMIAL AT A FIXED RADIAN COMPLEX
C FREQUENCY Y.
C
C USAGE

C CALL POLY(N,A,Y,Q)
C
C N - THE ORDER OF THE POLYNOMIAL.
C A - THE POLYNOMIAL COEFFICIENTS.
C Y - THE RADIAN COMPLEX FREQUENCY.
C Q -THE VALUE OF THE POLYNOMIAL EVALUATED AT Y.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C

" C REMARKS
C DOUBLE PRECISION IS USED IN ALL THE COMPUTATIONS.

A' C THE INPUTS ARE N,A AND Y.
C THE OUTPUT IS Q.

* C
SUBROUTINE POLY (N,A,Y,Q)
COMPLEX*I6 Y,Q
DOUBLE PRECISION A(1)
NN=N+I

DO 10 IU=1,NN
Q=Q-6-A(IU)*Y**(IU-I)

10 CONTINUE
RETURN
END

'2
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C SUBROUTINE FRQS
C
C PURPOSE
C THE PROGRAM IS FOR THE EVALUATION OF THE MAGNITUDE RESPONSE
C OF A SYMMETRICAL DIPLEXER COMPOSED OF TWO CANONICAL
C BUTTERWORTH NETWORKS AT A FIXED RADIAN FREQUNCY OMEGA.
C
C USAGE
C CALL FRQS(N,A OMEGAC,OMEGA,G12,G13,ITYPE)
C
C N - THE ORDER OF THE BUTTERWORTH RESPONSE.
C A - THE BUTTERWORTH COEFFICIENTS.
C OMEGAC - THE CUT-OFF FREQUENCY OF THE LOWPASS BUTTERWORTH
C NETWORK IN RADIAN.
C OMEGA - THE RADIAN FREQUENCY.
C G12 - THE TRANSDUCER POWER GAIN FROM PORT 1 TO PORT 2 AT
C A FIXED FREQUENCY OMEGA.
C G13 - THE TRANSDUCER POWER GAIN FROM PORT 1 TO PORT 3 AT
C A FIXED FREQUENCY.
C ITYPE - 0, G12 AND G13 ARE IN RATIO.

A C - 1, G12 AND G13 ARE IN DB.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C CALL POLY(N,A,Y,Q)
C
C REMARKS
C DOUBLE PRECISION IS USED IN ALL THE COMPUTATIONS.
C THE INPUTS ARE N,A,OMEGAC AND OMEGA.
C THE OUTPUTS ARE G12 AND G13.
C

SUBROUTINE FRQS(N,A,OMEGAC,OMEGA,G12,GI3,ITYPE)
COMPLEX*16 Y,Y1,Y2,PP1,QQ1,PP2,QQ2,QI,Q2,SD,S12,SI3,ZI,Z2
DOUBLE PRECISION OMEGA,OMEGAC,A(1),IMAG,G12,G13,REAL
Y=DCMPLX(0.OD0 ,OMEGA)
Yl=Y,' OMEGAC
CALL POLY(N,A,YI,QI)
Y2=Y*OMEGAC
CALL POLY (N,A,Y2,Q2)
PP1=QI-Yl**N
QQI=QI YI**N

PP2=Q2-1.
* QQ2=Q2-1.

SD=PPI*QQ2+PP2*QQ1+QQ1*QQ2
S12=2.*QQ2/SD
SI3=2.*(Y2**N)*QQ1/SD
G'I2=CDABS(S12)
G!3=CDABS(Si~3)
ZI=(Q!-Y!**N)/(QI+Y!**N)
Z2=(Q2-1.)/(Q2+1.)
IF(ITYPE.NE.0) RETURN
G!2=-20.*DLOG10(GI2)
G!3=-20.*DLOG10(GI3)
RETURN
END
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c SUBROUTINE PLOT1
C
C PURPOSE
C THE PROGRAM IS FOR THE PLOTTING ONE OR MORE CURVES
C (UP TO SIX) ON ONE PLOT BY A LINE PRINTER.

~C
S. C USAGE

C CALL PLOT1(X,Y,N,DY,M)
C
C X - A ONE-DIMENSIONAL ARRAY.
C y - A TWO-DIMENSIONAL ARRAY.
C N - THE NUMBER OF POINTS FOR EACH CURVE TO BE PLOTTED.
C DY - THE SCALE FACTOR OF Y.
C DY WILL BE DETERMINED AUTOMATICLY IF SET DY=O.
C M - THE NUMEBER OF CURVES TO BE PLOTTED ON
C A SINGAL PLOT.c
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.

L C[ SUBROUTINE PLOT1(X,Y,N,DY,M)
INTEGER ROW(81),STAR,BLANK,POINT,S3,S4,S5,PLUS
DATA STAR,BLANK,POINT,PLUS,S3,S4,S5,S6/1H*,1H ,IH.,lH+,lH-,lH$,lH:

1,"H&/
DIMENSION X(N),Y(N,M)
YMIN=1 .El0
YMAX=-1 .E-10
DO 5 I=1,81

5 ROW(I)=BLANK
DO 10 J=1,M
DO 10 I=1,N
IF(Y(I,J).GT.YMAX) YMAX=Y(I,J)

10 IF(Y(IJ).LT.YMIN) YMIN=Y(IJ)
.D=DY
IF(DY.EQ.0.) D=(YMAX-YMIN)/100.
IF(YMAX.LT.0.OR .YMIN.GT.O.) GO TO 15
NZ=-YMIN/D+I
ROW(NZ)=POINT

15 CONTINUE
SNN=N-4

WRITE(6,20)
7 20 FORMAT('1' ,5X, 'X(I)' ,8X,'Y(I,1)')

WRITE(6,25)
25 FORMAT(37X,'+',8(' -----------

DO 90 L=1,NN,5
DO 90 LL=1,5
I=L+LL-1

S' IF(I.NE.N) GO TO 32
DO 30 K=1,72,10
ROW(K) =PLUS

"A
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DO 30 KK=1,9

Kl=K+KK
30 ROW(Kl)=S3

GO TO 34

32 ROW(1)=S5
V ROW(81)=S5

IF(LL.EQ.5) ROW(1)=PLUS
IF(rL.EQ.5) ROW(81)=PLUS

34 CONTINUE
DO 50 J=1,M
NY=(Y(I,J)-YMIN)/D+1.5
IF(NY.GT.81) GO TO 50
GO TO (41,42,43,44,45,46), J

41. ROW(NY)=POINT
GO TO 50

42 ROW(NY)=STAR
GO TO 50

*43 RDW(NY)=PLUS
GO TO 50

44 ROW(NY)=S3
GO TO 50

45 ROW(NY)=S4
GO TO 50

*46 ROWCNY)=S5
50 CONTINUE

.e.WRITE(6,60) X(I ),Y(I ,1) ,ROW
60 FORMAT(lX,2El3.6,1OX,81Al)

DO 80 K=1,81.
80 ROW(K)=BLANK
90 CONTINUE

RETURN
END

.20
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C SUBROUTINE CRT1
C

. C PURPOSE
C THE PROGRAM IS FOR THE PRINTING OF THE CONFIGURATION
C AND THE ELEMENT VALUES OF A LADDER LOW-PASS
c LOSSLESS NETWORK TERMINATED IN A RESISTANCE LOAD.
C
C USAGE
C CALL CRT1(R,ALC,N)
C

CN - THE ORDER OF THE NETWORK.
C R - THE RESISTANCE OF THE LOAD.
C ALC - THE ELEMENT VALUES OF THE LADDER NETWORK.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKES
c DOUBLE PRECISION IS USED.
C THE INPUTS ARE R,ALC AND N.
C THE OUTPUTS ARE THE VALUES OF THE ELEMENTS.
C

SUBROUTINE CRTI(R,ALC,N)
DOUBLE PRECISION R,ALC(1)
WRITE(6,5)

5 FORMAT('' ,3X,'CIRCUIT CONFIGURATION'!!)
DO 20 M=1,N,2
WRTE(6,30) M,ALC(M)

30 FORM.T(4(3X,'j',23X,' '/)33X, I ,:L(' -' ),'C' ,II(V-' ),' ' ,I1X, 'C(' ,12, ')=' ,D20.1.2,3X,

-F /3(3X, ' ,23X,'jl/ )

"F(M.GT.N) GO TO 20
WR!TE(6,40) MM,ALC(M+I)

40 FORMAT(3X,' I',23X,'L' ,11X,'L(' ,I2, ')=',D20.12,2X,
5' H')

20 CONTINUE
WR'TE(6,10)R

10 FORMAT(3(3X,' ',23X, I'/),
14X,11('-'),'R' ,1('-'),1IX,'R=' ,D24.12,2X,'OHM')

RETURN
* END
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C SUBROUTINE CRT2
C
C PURPOSE
C THE PROGRAM IS FOR THE PRINTING OF THE CONFIGURATION AND
C THE ELEMENT VALUES OF A LADDER HIGH-PASS LOSSLESS
C NETWORK TERMINATED IN AN RESISTIVE LOAD.
C
C USAGE
C CALL CRT2(R,C,ALC,N)
C
C N - THE ORDER OF THE NETWORK.
C R - THE RESISTANCE OF THE LOAD.
C ALC - THE ELEMENT VALUES OF THE LADDER NETWORK.
C
C SUBROUTINZS AND FUNCTION SUBP.ROGRAMS REQUIRED
C NONE.
C
C REMARKS
C DOUBLE PRECISION IS USED.
C THE INPUTS ARE R,C,ALC AND N.
C THE OUTPUT IS THE ELEMENT VALUES.
C
C

SUBROUTINE CRT2 (R,ALC,N)
DOUBLE PRECISION R,ALC(1)
WRITE(6,5)

5 FORM.AT('I',3X,'CIRCUIT CONFIGURATION'//)
DO 20 M=1,N,2
WRITE(6,30) M,ALC(M)

3 FRMAT4(3X,'',23X,'j )

4'H'/3(3X,' ',23X,'I'/))
4 MM=M-I

IF(MM.GT.N) GO TO 20
V WRITE(6,40) MM,ALC(M+I)

40 FORMAT(3X,'I',23X,'C',11X,'C(',I2,')=',D20.12,2X,
5' F'/)

20 CONTINUE
WRITE(6,10)R

10 FORMAT(3(3X,'I',23X,'I'/) ,
.' 4X,11('-'),'R',11('-'),11X,'R=',D24.12,2X,'OHM')
RETURN
END

WN:
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APPENDIX D:

Program Package for the Design of Filters, Diplexers and

Multiplexers

(Kept in Account U29459)
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c

C'.. C SUBROUTINE DPLX

C PURPOSE
.-. C THE PROGRAM IS TO DESGIN A SYMMETRICAL DIPLEXER COMPOSED OF
J- C TWO BUTTERWORTH NETWORKS AND TO DETERMINE THE 3 DB CUT-

C OFF RADIAN FREQUENCY OF THE LOW-PASS ONE FOR SATISFING
C THE GIVEN ATTENUATION AT CROSSOVER FREQUENCY.
C
C USAGE
C CALL DPLX(OMEGCO,ATCO,N,OMEGAC,ITYPE)
C
C OMEGCO - THE CROSSOVER FREQUENCY IN RADIANS PER SECOND.
C ATCO - THE ATTENUATION AT THE CROSSOVER FREQUENCY.
C N - THE ORDER OF BUTTERWORTH RESPONSE.
C OMEGAC - THE CUT-OFF FREQUENCY OF THE BUTTERWORTH NETWORK IN

. C RADIANS PER SECOND.
C ITYPE - 0, ATCO IS IN RATIO.
C 1, ATCO IS IN DB.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C CALL BTCF(N,A)
C CALL FRQS(N,A,OMEGAC,OMEGCO,GI2,G13,ITYPE)
C
C REMARKES
C DOUBLE PRECISION IS USED IN ALL THE POMPUTATION.
C THE INPUT DATUM ARE OMEGCO,ATCO,N,ITYPE.
C THE OUTPUT DATUM ARE OMEGAC.
C

-K SUBROUTINE DPLX(OMEGCO,ATCO,N,OMEGAC,A,ITYPE)
DOUBLE PRECISION OMEGAI,OMEGCO,OMEGAC,ATI,ATCO,WI,W2,GI2,G13,A(1)
1,AA
ALPHA=. 618
IF(N.EQ.0) N=2

10 CALL BTCF(N,A)
WI=0.
W2=OMEGCO

1 OMEGAC=WI+ALPHA*(W2-Wl)
CALL FRQS(N,A,OMEGAC,OMEGCO,GI2,GI3,ITYPE)
IF(G12-ATCO) 15,5,2

* 2 IF(GI2-1.01*ATCO) 5,5,3
* 3 WI=OMEGAC

GO TO 1
15 W2=OMEGAC

GO TO 1
5 WRITE(6,60)OMEGAC,G12

. 60 FORMAT(5X,'OMEGAC=',D20.12,5X,'ATCO=',D20.12)
RETURN
END
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C
.% C SUBROUTINE MPLX

c
C PURPOSE
C THE PROGRAM IS FOR THE EVALUATION OF FREQUUENCY RESPONSE
C OF A MULTIPLEXER COMPOSED OF A MULTI-PORT CIRCULATOR AND
C THE BUTTERWORTH NETWORKS.
C
C USAGE
C CALL MPLX(N,M,OMEGA,OMEGAE,G21M)
C
C N - THE ORDER OF THE BUTTERWORTH RESPONSE.

C M - THE NUMBER OF CHANNELS.
C OMEGA - THE RADIAN FREQUENCY.
C OMEGAE - THE EDGE FREQUENCIES OF THE BAND-PASS RESPONSE.
C DG21M - THE TRANSDUCER POWER GAIN.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKS
C DOUBLE PRECISION IS USED IN ALL THE COMPUTATIONS.

O C THE INPUT VALUES ARE N,M, OMEGA,OMEGAE.
. C THE OUTPUT IS G21M.

SUBROUTINE MPLX(N,M,OMEGA,OMEGAE,G21M)
DOUBLE PRECISION OMEGA,OMEGAB,OMEGAE(10,2),OMEGAO(10),G21(10),
1GI1(10),DG21M(10),B(10),G21M(M)
DO 10 I=1,M
OMEGAO(I)=(OMEGAE(I,1)*OMEGAE(I,2))**0.5
B(I)=OMEGAE(I,2)-OMEGAE(I,1)
OMEGAB=(OMEGAO(I)/B(I))*(OMEGA/OMEGAO(I)-OMEGAO(I)/OMEGA)
G21(I)=10.*DLOG10(I.+ OMEGAB**(2*N))
GII(1)=10.*DLOG10(I.+(I./OMEGAB)**(2*N))
IF(I.NE.1) GO TO 5
G21M(I)=G21(I)
DG21M(I)=GII(I)
GO TO 10

5 DG21M(I)=DG21M(I-1)+GII(I)
G21M(I)=G21(I)+DG21M(I-1)

10 CONTINUE
RETURN
END

-1

~214



C
C
C SUBROUTINE BPT
C
C PURPOSE
C THE PROGRAM IS FOR THE EVALUATION OF THE ELEMENT VALUES OF
C A BANDPASS FILTER FROM THE LOWPASS FILTER.
C
C USAGE
C CALL BPT(N,OMEGA1,OMEGA2,ALC,AL,AC)

C N - THE ORDER OF THE FILTER.
C OMEGA1 - THE EDGE FREQUENCIES OF THE BAND-PASS RESPONSE.
C OMEGA2 - THE EDGE FREQUENCIES OF THE BAND-PASS RESPONSE.

C ALC - THE VALUES OF THE ELEMENTS OF LOW-PASS FILTER.
C AL - THE VALUES OF THE INDUCTANCES OF BANDPASS FILTER.
C AC - THE VALUES OF THE CAPACITANCES OF BANDPASS FILTER..
c
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKS
C DOUBLE PRECISION IS USED IN ALL THE COMPUTATIONS.
C THE INPUT VALUES ARE N,OMEGA1,OMEGA2 AND ALC.
C THE OUTPUT IS AL AND AC.
C

SUBROUTINE BPT(N,OMEGA1,OMEGA2,ALC,ALAC)
DOUBLE PRECISION OMEGAI,OMEGA2,ALC(N),AL(N),AC(N),OMEGAO,B
OMEGAO=(OMEGA1*OMEGA2)**0.5
B=OMEGA2-OMEGAI
DO 10 J=1,N,2
AL(J)=ALC(J)/B

10 AC(J)=B/(ALC(J)*OMEGAO**2)
DO 20 J=2,N,2
AC(J)=ALC(J)/B

20 AL(J)=B/(ALC(J)*OMEGAO**2)
DO 40 J=I,N

40 WRITE(6,50) J,AL(J),J,AC(J)
50 FORMAT(10X,'AL(',I2,')=',D20.12,5X,'AC(',I2,')=',D20.12)

RETURN
END
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C
C SUBROUTINE BTCF
C
C PURPOSE
C THE PROGRAM IS FOR THE EVALUATION OF THE COEFFICIENTS OF
C A BUTTERWORTH POLYNOMIAL WITH THE ORDER N.

V C RC LOAD.
-. C

C c USAGE
C CALL BTCF(N,A)
C
C N - THE ORDER OF BUTTERWORTH RESPONSE.
C A - THE VALUES OF BUTTERWORTH COEFFICIENTS.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKES
C DOUBLE PRECISION IS USED IN ALL THE COMPUTATION.
C THE INPUT DATUM IS N.
C THE OUTPUT DATUM ARE A.
c

SUBROUTINE BTCF(N,A)
DOUBLE PRECISION A(1),AA,PI

.. PI=3.1415926535898
e.'¢.NN=N-I

AA=I.
A(1)=AA
DO 10 IU=1,NN

"*. AA=AA*DCOS((IU-1)*PI/(2*N))/DSIN(IU*PI/(2*N))
A(IU+1)=AA

10 CONTINUE
NN=N+I
A(NN)=i.
RETURN

.... END

'2.

121

I



C SUBROUTINE BTNK
C
C PURPOSE
C THE PROGRAM IS FOR THE EVALUATION OF THE ELEMENT VALUES OF
C AN OPTIMUM BUTTERWORTH NETWORK TERMINATED IN A RESISTIVE
C GENERATOR WITH INTERNAL RESISTANCE R1 AND A PARALLEL
C RC LOAD.
C
C USAGE
C CALL BTNK(N,R1,R,C,OMEGAC,ALC)
C
C N - THE ORDER OF BUTTERWORTH RESPONSE.

* C R1 - THE INTERNAL RESISTANCE OF THE SOURCE.
C R - THE RESISTANCE OF THE LOAD.
C C - THE CAPACITANCE OF THE LOAD.
C OMEGAC - THE CUT-OFF FREQUENCY OF THE BUTTERWORTH NETWORK IN
C RADIANS PER SECOND.
C ALC - THE VALUES OF THE ELEMENTS OF BUTTERWORTH NETWORK.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C
C NONE.

* C
C REMARKES

*-'. C DOUBLE PRECISION IS USED IN ALL THE COMPUTATION.
- - C THE INPUT DATUM ARE N,R1,R,C AND OMEGAC.

C THE OUTPUT DATUM ARE ALC.
SUBROUTINE BTNK(N,R1,R,C,OMEGAC,ALC)
REAL*8 GAMMA,NT
DOUBLE PRECISION R,R1,C,CI,OMEGAC,PI,XP,XQ,AK,B,DELTA,RA

1,RB,RC,RD,RE,ALC(1)
PI=3.1415926535898

- XP=R*C*OMEGAC
XQ=2.*DSIN(PI/(2.*N))
IF(XP.LT.XQ) GO TO 20

10 DELTA=1.0-XQ/XP
Cl=C
AK=1.-DELTA**(2*N)
GO TO 30

20 DELTA=0.
AK=I.

* CI=XQ/(R*OMEGAC)
30 B=DELTA**N

NT=DSQRT(RI*(I.+B)/(R*(I.-B)))
WRITE(6,50)DELTAAKNT

50 FORMAT('I',2X,'DELTA= ',D20.12/3X,'AK= ',D20.12/3X,'NT =',D23.1
12/)
ALC(1)=CI-C
WRITE(6,60)ALC(1)

60 FORMAT(3X,'C( 1)=',IX,D20.12)
J=N/2
DO 90 M=1,J
RA=PI*(4*M-3)/(2.*N)

0. RB=PI*(4*M-2)/(2.*N)
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RC=PI*(4*M-1)/(2.*N)
4 MM=2*M

ALC(MM)=4 *DSIN(RA)*DSIN(RC)/(Cl*OMEGAC**2*(1 .-2.*DCOS(RB)*
4DELTA+DELTA**2))
WRITE(6,65)MM,ALC(MM)

65 FORMAT(3X,'L(',I2,')= ',D20.12)
IF(MM-N) 70,90,90

70 RD=PI*4*M/(2.*N)
RE=PI*(4*M+1)/(2.*N)
Cl=4.*DSIN(RC)*DSIN(RE)/(ALC(MM)*OMEGAC**2*(1.-2.*DELTA*DCOS(RD)

-- 5+DELTA**2))

ALC(MM1)=Cl
WRITE(6,80)MM1,ALC(MMl)

80 FORMAT(3X,'C(',12,')= ',D20.12)
90 CONTINUE

100 RETURN
END
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C

C SUBROUTINE CBNK
C
C PURPOSE
C THE PROGRAM IS FOR THE EVALUATION OF THE ELEMENT VALUES OF
C AN OPTIMUM CHEBYSHEV NETWORK TERMINATED IN A RESISTIVE
C GENERATOR WITH INTERNAL RESISTANCE R1 AND A PARALLEL
C RC LOAD.

/': C

C USAGE
C CALL CBNK(N,RI,R,C,OMEGAC,EP,ALC)
C
C N - THE ORDER OF CHEBYSHEV RESPONSE.
C R1 - THE INTERNAL RESISSTANCE OF THE SOURCE.
C R - THE RESISTANCE OF THE LOAD.
C C - THE CAPACITANCE OF THE LOAD.

OMEGAC - THE CUT-OFF FREQUENCY OF THE CHEBYSHEV NETWORK IN
C RADIANS PER SECOND.

.i C EP - THE RIPPLE COEFFICIENT OF THE CHEBYSHEV RESPONSE.
C ALC - THE VALUES OF THE ELEMENTS OF CHEBYSHEV NETWORK.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

* C NONE.
C
C REMARKES
C DOUBLE PRECISION IS USED IN ALL THE COMPUTATION.

- : C THE INPUT DATUM ARE N,R1,R,C,OMEGAC AND EP.
C THE OUTPUT DATUM ARE ALC.
C

SUBROUTINE CBNK(N,R1,R,C,OMEGAC,EP,ALC)
REAL*8 GAMMA,NT
DOUBLE PRECISION R,R1,C,CI,OMEGAC,PI,XP,XQ,AK,B,DELTA,RA

1,RB,RC,RD,RE,ALC(1),ASINH,EP,A,A1
PI=3.1415926535898
XP=R*C*OMEGAC
A=ASINH(I./EP)/N
XQ=2.*DSIN(PI/(2.*N))/DSINH(A)
IF(XP.LT.XQ) GO TO 20
DELTA=EP*DSINH(N*ASINH((I.-XQ/XP)*DSINH(A)))
Cl=C

* AK=1.-DELTA**2
GO TO 30

20 DELTA=0.
AK=I.
CI=2.*DSIN(PI/(2*N))/(R*OMEGAC*DSINH(A))

30 WRITE(6,35)CI
35 FORMAT('I',2X,'CI=',4X,D20.12)

AI=ASINH(DELTA/EP)
J=N/2
IF(2*J.EQ.N) GO TO 40
BO=2.**(1-N)*DSINH(N*A)
BO1=2.**(I-N)*DSINH(N*AI)
GO TO 50

40 BO=2.**(1-N)*DCOSH(N*A)
BO1=2.**(1-N)*DCOSH(N*A1)
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50 NT=((Rl*(BO+BO1))/(R*(BO-~BOl)))**0.5
WRITE (6, 55)DELTA ,AK,NT

55 FORMAT(3X,'DELTA= ',D20.12/3X,'AK= ',D20.12/3X,'NT =',D23.12/)
ALC(1)=Cl-C
WRITE(6 ,60)ALC(2.)

60 FORMAT(3X,'C( 1)=',lX,D20.12)
J=N/2

V. DO 90 M=1,J
RA=PI *(4kM-2)/(2.*N)
RB=PI* (4*M-3)/(2.*N)
RC=PI* (4*M-1)/(2.*N)
F=4 *(DSINH(A)**2+DSINH(Al)**2+DSIN(RA)**2-2.*DSINH(A)*DSINH(Al)
1*DCOS(RA))

V. MM=2*M
ALC (MM)=16.*DSIN(RB)*DSIN(RC)/(OMEGAC**2*F*Cl)
WRITE(O6,65)MM,ALC (MM)

65 FORMAT(3X,'L(',12,')= ',D20.12)
IF(MM-N) 70,90,90

70 RD=PI*4*M/(2.*N)
RE=PI*(4*M+1)/(2.*N)
F=4.* (DSINH(A)**2+ DSINH(Al)**2+DSIN(RD)**2-2.*DSINH(A)*DSINH(A1)

2*DCOS(RD))
0 mm1=MM+1

Cl=16.*DSIN(RC)*DSIN(RE)/(OMEGAC**2*F*ALC(MM))
ALC(MM1)=Cl
WRITE(6 ,80)MM1 ,ALC(MM1)

* 80 FORMAT(3X, 'C(' ,12,' )= ' ,D20.12)
90 CONTINUE

100 RETURN
END
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-l-." C SUBROUTINE FRQS1

C
C PURPOSE
C THE PROGRAM IS FOR THE EVALUATION OF THE MAGANITUDE RESPONSE
C OF A RATIONAL FUNCTION.
C
C USAGE
C CALL FRQSI(NA,NB,A,B,OMEGA,G,ITYPE)
C
C NA - THE DEGREE OF THE NUMERATOR POLYNOMIAL.
C NB - THE DEGREE OF THE DENOMINATOR POLYNOMIAL
C A - THE COEFFICIENTS OF THE NUMERATOR.
C B - THE CIEFFICIENTS OF THE DENOMINATOR.
C OMEGA - THE RADIAN FREQUENCY.
C G - THE MAGANITUDE EITHER IN RATIO AR IN DB.

C ITYPE - 0 G IS IN DB.
C - 1 G IS IN DB.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C POLY(N,A,Y,Q)
c
C REMARKES
C DOUBLE PRECISION IS USED IN ALL THE COMPUTATION.
C THE INPUT DATUM ARE NA,NB,A,B,OMEGA AND ITYPE.
C THE OUTPUT DATA IS G.
C

SUBROUTINE FRQSI(NA,NB,A,B,OMEGA,G,ITYPE)
DOUBLE PRECISION A(NA),B(NB),OMEGA,G,REAL,IMAG

COMPLEX*16 Y,QA,QB
Y=DCMPLX(0.DO,OMEGA)
NA=NA-1
NB=NB-l
CALL POLY (NA,A,Y,QA)
CALL POLY (NB,B,Y,QB)
C=(REAL(QA)**2+IMAG(QA)**2)**(0.5)
G=(REAL(QB)**2+IMAG(QB)**2)**(0.5)/G
IF(ITYPE.EQ.0) G= 20.*DLOG10(G)
NA=NA+.
NB=NB+I
RETURN
END

.'o
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. C SUBROCTINE FRQS
c
C PURPOSE
C THE PROGRAM IS FOR THE EVALUATION OF THE MAGNITUDE RESPONSE
C OF A SYMMETRICAL DIPLEXER COMPOSED OF TWO CANONICAL

C BUTTERWORTH NETWORKS AT A FIXED RADIAN FREQUNCY OMEGA.
C
C USAGE
C CALL FRQS(N,A OMEGAC,OMEGA,G12,GI3,ITYPE)
C
C N - THE ORDER OF BUTTERWORTH RESPONSE.
C A - THE BUTTERWORTH COEFFICIENTS.
C OMEGAC - THE CUT-OFF FREQUENCY OF THE LOWPASS BUTTERWORTH
C NETWORK IN RADIAN.
C OMEGA - THE RADIAN FREQUENCY.
C G12 - THE TRANSDUCER POWER GAIN FROM PORT I TO PORT 2 AT
C THE FIXED FREQUENCY OMEGA.
C G13 - THE TRANSDUCER POWER GAIN FROM PORT 1 TO PORT 3 AT
C THE FIXED FREQUENCY.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C CALL POLY(N,A,Y,Q)
C
C REMARKES
C DOUBLE PRECISION IS USED IN ALL THE POMPUTATION.
C THE INPUT DATUM ARE N,A,OMEGAC,OMEGA.
C THE OUTPUT DATUM ARE G12,G13.
C

SUBROUTINE FRQS(N,A,OMEGAC,OMEGA,G12,G13,ITYPE)
COMPLEX*16 Y,Y1,Y2,PP1,QQ1,PP2,QQ2,QI,Q2,SD,S12,SI3,ZI,Z2
DOUBLE PRECISION OMEGA,OMEGAC,A(1),IMAG,G12,GI3,REAL
Y=DCMPLX(0.ODO ,OMEGA)
YI=Y/OMEGAC
CALL POLY(N,A,YI,QI)
Y2=Y*OMEGAC
CALL POLY (N,A,Y2,Q2)
PP1=QI-Y.!**N
QQ1=Ql+Y**N
PP2=Q2-1.
QQ2=Q2+1.

6 SD=PPI*QQ2+PP2*QQ1+QQ1*QQ2
S12=2.*QQ2/SD
S13=2.*(Y2**N)*QQ1/SD
G12=(REAL (S!2)**2+IMAG(SI2)**2)**0.5
G13=(REAL(SI3)**2+IMAG(Sl3)**2)**0.5
Zl=(Q!--Y **N)/(Q -,Yl**N)
Z2=(Q2-!.)/(Q2+1.)
IF(ITYPE.NE.O) RETURN
G12=-20.*DLOG10(Gl2)
G!3=-20.*DLOGi0(G13)
RETURN
END
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C SUBROUTINE POLY
C
C PURPOSE
C THE PROGRAM IS FOR THE EVALUATION OF THE VALUES OF
C A COMPLEX POLYNOMIAL AT A FIXED RADIAN COMPLEX
C FREQUENCY Y.

N C
C USAGE
C CALL POLY(N,A,Y,Q)
C
C N - TH7 ORDER OF THE POLYNOMIAL.
C A - THE POLYNOMIAL COEFFICIENTS.
C Y - THE RADIAN COMPLEX FREQUENCY.
C Q - THE VALUE OF THE POLYNOMIAL AT Y.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKES
C DOUBLE PRECISION IS USED IN ALL THE POMPUTATION.
C THE INPUT DATUM ARE N,A AND Y.

* C THE OUTPUT DATUM IS Q.
C

SUBROUTINE POLY (N,AIYQ)
COMPLEX*16 Y,Q
DOUBLE PRECISION A(1)

PNN=N+I

Q=0.
DO 10 IU=1,NN
Q=Q+A(IU)*Y**(IU-1)

10 CONTINUE
RETURN
END
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( C
C SUBR'UT:NE DPLXAJ

- C

I C PURPOSE
C THE PR2GRAM IS TO DESGIN A DIPLEXER COMPOSED OF A THREE-PORT
C CIRCULATOR AND TWO BUTTERWORTH NETWORKS AND TO DETERMINE
C THE ADJUSTMENT OF THE 3 DB CUT-OFF FREQUENCY IN EITHER
C LOSS-PASS OR HIGH-PASS NETWORK.

S C
C USAGE
C CALL DPLXAJ(N,OMEGAC,OMGCL,OMGCH,ITYPE)

* C
," C N - THE ORDER OF BUTTERWORTH RESPONSE.

C OMEGAC - THE CROSSOVER FREQUENCY IN RADIANS PER SECOND.
C OMGCL - THE ADJUSTED FREQUENCY OF THE LOW-PASS NETWORK.
C OMGCH - THE ADJUSTED FREQUENCY OF THE HIGH-PASS NETWORK.
C !TYPE - 1, THE ADJUSTED NETWORK IS A HIGH-PASS NETWORK.
C 2, THE ADJUSTED NETWORK IS A LOWPASS NETWORK.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.

'' C
C REMARKES

, C DOUBLE PRECISION IS USED IN ALL THE POMPUTATION.
C THE INPUT DATUM ARE N,OMEGAC,ITYPE.TYPE.
C THE OUTPUT DATUM IS EITHER OMGCL OR OMGCH.
C

SUBROUTINE DPLXAJ(N,OMEGAC,OMGCL,OMGCH,ITYPE)
DOUBLE PRECISION OMEGAC,OMGCL,OMGCH,OMGAJ
OMGAJ=(2./(I.+ OMEGAC**(4*N)) -1.)**(I./(2*N))/OMEGAC

- GO TO (1,2),ITYPE
" 1 OMGCH=OMGAJ

OMGCL=OMEGAC
WRITE(6,10)OMEGAC,OMGCL,OMGCH

10 FOR.MAT('<0',5X,'OMEGAC=',D20.12,5X,'OMGCL=',D20.12,5X,'OMGCH=',
1D20.12//)
GO TO 20

2 O0MGCL ./OMGAJ
OMGCH=1.,,/COMEGAC
WRITE ( 6, 15 ) OMEGAC, OMGCL,OMGCH

15 FCOVMA 'O',5X,'OMEGAC=',D20.12,5X,'OMGCL=',D20.12,5X,'OMGCH=',
1D2C .12,/,

20 RETURN
END

' 4
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'C ,TNE DBXCH0C

C PU_ RPOsE
C 7T.E PRDGRAX. !S FOR THE EVALUATION OF FREQUUENCY RESPONSE

." C 3-- A DIPLEXER COMPOSED OF A THREE-PORT CIRCULATOR AND
- C TW1 BUTTERWORTH NETWORKS.

N.. C

C

C USAGE
C CA-.. DPLXKi(N,OMGCL,OMGCH,OMEGA,G1,G2,GA,ITYPE)
C
C N - THE ORDER OF BUTTERWORTH RESPONSE.
C . THE CUT-OFF FREQUENCY OF THE LOW-PASS BUTTERWORTH
C NETWORK IN RADIANS PER SECOND.
C ,M -- THE CUT-OFF FREQUENCY OF THE HIGH-PASS BUTTERWORTH
C NETWORK IN RADIAN PER SECOND.
C Gl - THE TRANSDUCER POWER GAIN OF THE LOW-PASS CHANNEL.

" C G2 - THE TRANSDUCER POWER GAIN OF THE HIGH-PASS CHANNEL.
C
C SUBRD.NES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REmAR ES
C DOUBLE PRECISION IS USED IN ALL THE POMPUTATION.
C THE NPUT DATUM ARE N,OMGCL,OMGCH,OMEGA.
C ThE OUTPUT DATUM ARE GI,G2.
C

SUB9'TNE OPLXCH(N,OMGCL,OMGCH,OMEGA,G1,G2,GA,ITYPE)
DOUBl ,R. _PCS!GN OMGCL,OMGCH,OMEGA,GI,G2,GA
GI=-IC.*D-Ol0(1.±(OMEGA/OMGCL)**(2*N))
G2="i. DLO0IC(I.-.+(OMGCH/OMEGA)**(2*N))
GO T2 (.1,2) ,ITYPE

1 GA=lK. DLQGi0(I.#(OMGCL/OMEGA )**(2*N))
G2 =G 2 -GA
G: TO E.G

2 GA=->). _ DLOC - . -(OMEGA /OMGCH)**(2*N))

20 RE:-"
END

Pd
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C
C SUBROUTINE CRT
C
C PURPOSE
C THE PROGRAM IS FOR PRINTING THE CONFIGURATION AND THE
C THE ELEMENT VALUES OF A CASCADE LOW-PASS LOSSLESS
C NETWORK TERMINATED IN A RC PALLEL LOAD.

N C
C USAGE
C CAL-L CRT(R,C,ALC,N)
C
C N - THE ORDER OF THE NETWORK.

do C R - THE RESISTANCE OF THE LOAD.
C C - THE CAPACITANCE OF THE LOAD.
C ALC - THE VALUES OF THE ELEMENTS OF CHEBYSHEV NETWORK.

C
C SUBROUT:-NES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REMARKES
C DOUBLE PRECISION IS USED.
C THE INPUT DATUM ARE R,C,ALC AND N.

* C THE OUTPUT DATUM ARE THE VALUES OF THE ELEMENTS.
C

SUBROUTIF-NE CRT(R,C,ALC,N)
DOUBLE PRECISION R,C,ALC(l)
WRITE(6,10)RC

10 FORMAT('1',7X,7('-'),'R',7('-'),16X,'R=',D24.12,2X,COHM'/

2 ),')3X, 'I',4X,7('- ) , 'C' ,7( '-' ),16X, 'C= ' ,D20.12,2X, Fl)
DO 20 h=1,N,2
WRITE(6,30) M,ALC(M)

30 FORMAT( 4(3X,'f,2X '!
3 3X, I,11( '-' ) ,'C', ,1('- ) , 'j',11X, 'C( ',12,' )=' ,D20.12,3X,
4 'F','3(3x, 'j',23X,'jI'I))

M= M+ 1
IF(Ml.GT'.N) GO TO 20
WRITE(6,40O' MYM,AlC(M+1)

40 FORNAT( 4? ,2 X, 'I' ,23X, 'L' ,11X, 'L(' ,12,' )=' ,D20.12,2X,
5' H')

20 CONTINUjE

RETURN
END



e!

c

C
,> C SUBROUTINE CRTI

C PURPOSE
C THE PROGRAM IS FOR PRINTING THE CONFIGURATION AND THE

-'° C THE ELEMENT VALUES OF A CASCADE LOW-PASS LOSSLESS
"C NETWORK TERMINATED IN A RESISTANCE LOAD.

C USAGE
C CALL CR.'1I(R,ALC,N)
c
C N - THE ORDER OF THE NETWORK.
C R THE RESISTANCE OF THE LOAD.
C ALC - THE VALUES OF THE ELEMENTS OF CHEBYSHEV NETWORK.

C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
c
C REMARKES
C DOUBLE PREC:SION IS USED.
C THE INPUT DATUM ARE R,ALC AND N.
C THE OUTPUT DATUM ARE THE VALUES OF THE ELEMENTS.C

SUBROUTINE CRTI(RALC,N)
DOUBLE PRECISION R,ALC(1)
WRITE(6,5)

5 FORMAT('l',3X,'CIRCUIT CONFIGURATION'//)
DO 20 M=I,N,2
WRITE(6,30) M,ALC(M)

30 FORMAT( 4(3X, 'I' ,23X,'I
3 3X, ' ,11( ), 'C,11(' 'I',11X, 'C(',I2,')=' ,D20.12,3X,

4 'F'/3(3X,'I ,23X,v'j/))
MM='M +1
IF(MM.GT.N) GO TO 20
WRITE(6,40) MM,ALC(M+I)

40 FORMAT(3X,'I',23X,'L',11X,'L(',12,')=',D20.12,2X,
S5'H')

20 CONTINUE
WRITE(6,10)R

10 FORMAT(3(3X, 'I ,23X, 'j/),
* 1 4X,II('-'),'R',11('-'),11X,'R=',D24.12,2X,'OHM')

RETURN
END
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C
C SBTLN CRT2

* C
C PUJRpOlSE
C THE PROGRAM IS FOR PRINTING THE CONFIGURATION AND THE
C THE ELEMENT VALUES OF A CASCADE HIGH-PASS LOSSLESS
C NETWORK TERMINATED IN A RESISTANCE LOAD.
r

- C USAG.-E
* C CALCRT2',R,ALC,N)

C
C N - THE ORDER OF THE NETWORK.
C - THE RESISTANCE OF THE LOAD.
C ALC - THE VALUES OF THE ELEMENTS OF CHEBYSHEV NETWORK.
C
C SUBRIJT"NES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.
C
C REYARKES
C DOUBLE PRECISION IS USED.

* C THE INPUT DATUM ARE R,ALC AND N.
C THE OUTPUT DATUM ARE THE VALUES OF THE ELEMENTS.

* C
SUBROUTI-NE CRT12(R,ALC,N)
DOUBLE PRECISION R,ALC(1)
WRITE( 6,5)

rI5 FORPMAT(1I',3X,'CIRCUIT CONFIGURATION'//)

WR:TE(6,30) M,ALC(M)
- 30 FORMAT(4(3X, 'I',23X,'V)

4'H'/3(3X, ' ,23X,'I'/))
MMM -l

IF(MMN.GT.N) GO TO 20
WRITE (6,40) MM,ALC(M+1)

- 40 FOPYAT(3X, ' ',23X,'C' ,11X, 'C(',12, ')=' ,D20.12,2X,
5' F / )

20 CONTINUE
WRIYE (6,10) R

10 FORMA'T(3(3X,' ',3,
1 4X,Ili('-' ),'R' ,1J.('-' ),llX,'R=' ,D24.12,2X,'OHM' )

* RETUJRN
END

228
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C sU3RDUT:NE PLOTi
C
C PUjRPOSE
C THE PROGRAM IS FOR THE PLOTTING ONE OR MORE CURVES
C (UP TO SIX) ON ONE PLOT BY A LINE PRINTER.
C
C USAGE
C CALL PLOT1(X,Y,N,DY,M)
C
C x - A ONE-DIMENSIONAL ARRAY.
C y - A TWO-DIMENSIONAL ARRAY IN WHICH EACH

N COLUM REPRESENTS THE VALUES OF A VARIABLE.
C N-THE NUMBER OF POINTS FOR EACH CURVE TO BE PLOTTED.
C Dy - THE SCALE FACTOR OF Y.

-~ C DY WILL BE DETERMINED AUTOMATICLY IF SET DY=O.
C M - THE NUMEBER OF CURVES TO BE PLOTTED ON
C A SINGAL PLOT.
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE.

7% SUB7ROUTINE PLOT1(X,Y,N,DY,M)
* INTEGER ROW(81),STAR,BLANK,POINT,S3,S4,S5,PLUS

DATA STAR,BLANK,POINT,PLUS,S3,S4,S5,S6,N1,N2,N3,N4/1H*,1H l1H. ,lH+
1,1i- , 1H$ , H: , H& , Hi , H2 , H3, 1H4/
DIMENSION X(N),Y(N,M)

YM4AX=-1 .E-10
DO 5 i=1,81

5 ROW(l)=BLANK
DO 10 3=1,M
DO 0 1=1,N
IF(Y(T,J).GT.YMAX) YMAX=Y(I,J)

10 ,F(Y(I,J).LT.YMIN) YMIN=Y(I,J)
D=DY
IF(DY.EQ.0.) D=(YMAX-YMIN)/80.
IF(YMAX.LT.0.OR .YMIN.GT.O.) GO TO 15
NZ= -YMIND-J
ROW(NZ )=POINT

15 CONTINUE
NN=N-4

WRITE(6,20)
20 FORMAT('1' ,5X,'X(I)',8X,'Y(I,1)')

WRITE(6,25)
25 FORMAT(37X, '+' ,8('-----------+ 1))

DO 90 L=1,NN,5
DO 9b I.L=1,5

* I-L+LL-1
IF(I.NE.N) GO TO 32
DO 30 K=1,72,10

* POW(K)=PLUS
DO 30 KK=1,9
Kl=K-KK

*30 ROW(F1)=S3
GO 'O 34

32 ROW(I)=5
ROW(81)=S5
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0FL.Q5 O()PU

IF(LLEQ5) ROW(81)PUS

3CONTINUE

00% DO 50 J=1,m
NY=(Y(I ,J)-YMIN)/D+1.5
IF(NY.GT.81) GO TO 50

4GO TO (41,42,43,44,45,46), J
41ROW( NY ) =N

SGO TO 50
42 ROW(NY)=N2

GO TO 50
43 ROW(Ny)=N3

GO TO 50
44 ROW(NY)=N4

GO TO 50
45 ROW(NY)=S4

GO TO 50
46 ROW(NY)=S5
50 CONTINUE

WRITE(6,60) x(i) ,Y(i ,1) ,ROW
60 FORMAT(X,2E3.6,1OX,81Al)

DO 80 K=1,81
80 ROW(K)=BLANK
90 CONTINUE

RETURN
END
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FUNCTION IMAG(X)
COMPLEX*16 X
REAL*8 IMAG
IMAG=X* (0. ,-1.)
RETURN
END

C
FUNCTION REAL(X)
COMPLEX*16 X
DOUBLE PRECISION REAL
REAL=X
RETURN
END

C
FUNCTION ASINH(X)
DOUBLE PRECISION X,ASINH
Y=X
ASINH= ALOG(Y+(Y**2+1.)**0.5)
RETURN

4- END
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C
c
C

I SUBROUTINE IMCS(Rl,RLC,IE,IC,NE,OMEGA,Z,GITYPE)
DIMENSION RLC(l),IE(1),IC(l)
COMPLEX Z
z=(0.,0.)
DO 50 I=1,NE
IETYPE=IE(I)
IF(IC(I).EQ.2) GO TO 20
GO TO (11 13,15),IETYPE

11 Z=Z+CMPLX(RLC(I),O.)
GO TO 50

2.3 Z=Z+CMPLX(0.,OMEGA*RLC(I))
GO TO 50

15 Z=Z+CMPLX(0.,2../(OMEGA*RLC(I)))
GO TO 50

20 GO TO (21,23,25),IETYPE
21 z=1./Z+CMPLX(l./RLC(I),0.)

V GO TO 30
23 Z=1./Z+CMPLX(0.,l./(OMEGA*RLC(I)))

GO TO 30
*25 Z=1./Z+CMPLX(0.,(OMEGA*RLC(I)))

30 z=1./Z
50 CONTINUE

R=Z

D= (R+R.)**2+x**2
G=4.*R1*R/D
IF(ITYPE.EQ.0) G=-~10.*ALOG10(G)
RETURN

END
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C
C
C

DIMENSION X(50),YG(50,6)
DOUBLE PRECISION OMEG(3),ALC(1O),OMEGA,OMEGAC,OMGCL,OMGCH,G1,
1GA,OMGCH.
READ, N,OMEGAC,ITYPE
WRITE( 6,15)N,OMEGAC, ITYPE

15 FORMAT('l',5X,'N=',I3,1OX,'OMEGAC=',D20.12,1OX,'ITYPE-',Il//)
CALL DPLXAJ (N ,OMEGAC,OMGCL,OMGCH, ITYPE)
DO 80 1=1,50
OMEGA=I*0.04
CALL DPLXCH(NOMGCL,OMGCH,OMEGA,G1,G2,GA,ITYPE)
x(I )=OMEGA
YG(I ,1)=G1
YG(I ,2)=G2
YG (I , 3)=GA

80 CONTINUE
OMEG(1)=OMEGAC
OMEG(2)=1.
OMEG(3)=l./OMEGAC
DO 82 K=1,3
CALL DPLXCH(N,OMGCL,OMGCH,OMEG(K),G1,G2,GA,ITYPE)

82 WRITE(6,85)OMEG(K),G1,G2,GA
85 FORMAT(6X,'OMEGA=',D20.12,5X,'G1=',D20.12,5X,'G2=',D20.12,5X,

1,D20.12)
CALL PLOT1(X,YG,50,0.25,2)
CALL BTNK (N,1.DO,1 .D0,0.D0,OMGCL,ALC)
CALL CRT1 (I.D0,ALCN)
OMGCH1=1 ./OMGCH
CALL BTNK (N,1DO,1 .DO,0.DQ ,OMGCH1 ,ALC)
DO 86 I=1,N

86 ALC(I)=1./ALC(I)
CALL CRT2 (1.DO,ALC,N)
STOP
END
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C

DOUBLE PRECISION QMEGAE( 10,2) ,OMEGA,OMEGA1 ,OMEGA2 ,OMEGAO(10),
1G21 (10) ,G11(10) ,G21M(10) ,DG21M(1O) ,B(10),
1Ri, R,CALC (10) ,AL( 10) ,AC (10)
DIMENSION X(50),YG(50,6),ZG(50,6),YG1(50,6),ZG1(50,6)
READ, N,OMEGA1,OMEGA2
WRITE(6 ,1O)N,OMEGA1 ,OMEGA2

10 FORMAT('1',5X,'N=',13,1OX,'OMEGA1=',D20.12,1OX,'OMEGA2=',D20.
READ,M
WRITE(6,15)M

15 FORMAT(6X,'M=',13//)
DO 20 I=1,M
READ, OMEGAE(I,1),OMEGAE(I,2)

20 WRITE(6,25)I,OMEGAE(I,1),I,OMEGAE(I,2)
25 FORMAT('0',5X,'OMEGAE(',I2,',l)=',D20.12,IOX,'OMEGAE(',I2,',2

120.12)
WRITE(6,30)

30 FORMAT('1',4X,'OMEGA',BX,'G21M'/)
DO 80 I=1,50
OMEGA=OMEGA1+ (OMEGA2-OMEGA1 )*1/50.

* X(I)=OMEGA
CALL MPLX(N,M,OMEGA,OMEGAE,G21M)
WRITE(6,35)OMEGA, (G21M(J) ,J=1,M)

35 FORMAT(1X,5(D12.5))
DO 40 K=1,M

40 YG(I,K)=G21M(K)
80 CONTINUE

CALL BTNK (N,1.DO,1.DO, 0.DO,1.DO,ALC)
CALL CRT1 (1.DO,ALC,N)
DO 100 I=1,M

A WRITE(6,99) I
99 FORMAT('0',8X,'M=',12/)

CALL BPT (N,OMEGAE(I,l),OMEGAE(I,2),ALC,AL,AC)
100 CONTINUE

CALL PLOT1(X,YG,50,0.25,M)
STOP
END

ell
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C
C

DOUBLE PRECISION OMEGA,G,A(1O),B(1O)
COMPLEX*16 Y,QA,QB
DIMENSION X(100),YG(100)
READ(5,5)NA,NB
READ(5,6) (A(I),I=1,NA)
READ(5,6) (B(I) ,I=1,NB)

5 FORMAT(2I2)
6 FORMAT(8F10.O)
WRITE(6,9)NA,NB

9 FORMAT('1',3X,'NA=',12,5X,t NB=',I2)
WRITE(6,15) (I4 A(I ) ,I =1,NA)

15 FORMAT(lX, 5(3X,'A(',12,')=',D15.7))
WRITE(6,16)(I,B(I),I=1,NB)

1.6 FORMAT(lX, 5(3X,'B(',2,)n',D15.7))

25 FORMAT('1',5X,'OMEGA',12X,'G'/)
%le DO 10 I=1,100
% OMEGA=I*0.02

X(I)=OMEGA
0 CALL FRQS1(NA,NB,A,B,OMEGA,G,O)

YG(I)=G
10 WRITE(6,20) OMEGA,G
20 FORMAT(lX, 2D15.7)

"A CALL PLOTXY(X,YG,100)
A STOP

END
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2. C
C

,.. C

DOUBLE PRECISION R,R1 ,C,OMEGAC,ALC(20)
READ,R,C,R1 ,OMEGAC,N
WRITE(6 ,100)R,C,R1,OMEGAC,N

100 FORMAT(3X,'R=',5x,D20.12/3x,'C=',5x,D20.12/3X,'Rl1',4X,D20.12
* 1/3X,'OMEGAC=',D20.12/3X,IN- ',3X,13/)

CALL BTNK(N,R1,R,C,OMEGAC,ALC)
CALL CRT(R,C,ALC,N)
STOP

- END
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DIMENSION RLC(20) ,IE(20) ,IC(20) ,X(50) ,YG(50,1)
COMPLEX Z
READ, Rl
WRITE(6,5) RI

5 FORMAT('1',29X,'Rl=',7X,E15.7//)
READ ,NE
DO 10 I=1,NE
READ, RLC(I),IE(I),IC(I)

10 WRITE(6,15)I,RLC(I),I,IE(I),I,IC(I)
15 FORMAT(30X,'RLC(',12,')=',E17.7,1OX,'IE(',I2,')=',I2,10X,'IC(',

J=1
M= 1
N=50
DO 80 1=1,14
OMEGA=I*0.02
CALL IMCS(R1 ,RLC,IE,IC,NE,OMEGA,Z,G,1)
X(I)=OMEGA

0 YG(I,J)=G
80 WRITE(6,40)I,OMEGA,I,G
40 FORMAT(1X,'OMEGA(',I2,')=',E15.7,1OX,'G(',I2,').',E15.7)

YMIN=1.El0
YMAX=-1 .E-10
DO 16 J=1,M
DO 16 I=1,N
lF(YG(I,1J).GT.YMAX) YMAX=YG(I,J)

16 IF(YG(I,J).LT.YMIN) YMIN=YG(I,J)
DY= YMAX/YMIN
RIPPLE=10.*QLOG1(DY)
WRITE(6,20) YMAX,YMIN,RIPPLE

20 FORMAT( 1X,'YMAX=',E15.7,5X,'YMIN=',E15.7,5X,'RIPPLE=',E15.7,'DB')
CALL PLOT1(X,YG,50,O.,1)
STOP
END

*U OENETPINIG1*~ 98- 4-5-01
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